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Abstract

This study uses a linear model of an Integrated Power and Attitude Control

System (IPACS) to investigate the vibration interaction between multiple flywheels.

An easily extendable Matlab® script is created for the analysis of flywheel vibra-

tions. This script is used to build a vibration model consisting of two active magnetic

bearing flywheels mounted on a support structure. The flywheels are rotated at vary-

ing speeds, with an imbalance-induced centripetal force in one or both wheels causing

vibrations in both wheels. Flywheel and system responses are examined for low fre-

quency vibrations which would cause undesirable excitation to a satellite using IPACS,

with a specific focus on the beat phenomenon and extra-synchronous vibration. Extra-

synchronous resonant vibration between multiple rotors is shown to exist in an ideal

undamped configuration but even a very small realistic amount of damping is enough

to mitigate the effect enough that it is of less concern than individual rotor vibration

inputs. Extra-synchronous resonant vibration is thus shown to have a minimal effect

on satellite IPACS operation.
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Vibration Interaction in a

Multiple Flywheel System

I. Introduction

Advanced flywheels are an exciting technology with the potential to greatly im-

prove performance for satellite energy storage systems. They have been investigated

for use in space since the early 1960’s, and supporting technologies are finally begin-

ning to mature to the point that they may soon be feasible. Unfortunately, despite

much historic optimism, there are still unsolved and unstudied problems with their

operation and implementation. This thesis investigates two areas of potential concern

to see whether they pose any particular challenges to advanced flywheel operation in

space: the beat phenomenon and extra-synchronous whirl excitation caused by inter-

actions between multiple connected, unbalanced flywheels. This thesis also provides

a flexible dynamics model of vibrations that can be used to study various Integrated

Power and Attitude Control System (IPACS) configurations.

1.1 Definitions

For the purpose of this thesis, a battery will refer to a secondary electrochemical

cell battery. A flywheel is a rotating mass which is used to store kinetic energy. An

advanced flywheel will be a flywheel unit consisting of a high-speed, high-moment of

inertia (MOI), low-mass rotor, frictionless electromagnetic bearings, a brushless elec-

tric motor/generator, and the electronics necessary to control the motor and bear-

ings, as well as the associated support structure. In this thesis, advanced flywheels

are assumed but not explicitly stated each time. Flywheels as studied here are those

primarily intended for energy storage, which excludes similar reaction wheel and con-

trol moment gyro systems. A satellite flywheel energy storage system, usually referred

1



to in the context of an IPACS, contains a minimum of two flywheel units in order

to allow for a net zero angular momentum and prevent uncontrolled spinning of the

satellite. Four flywheel units are required for full, uncoupled, 3-axis attitude control

and energy storage in a non-gimbaled configuration.

Whirl is a natural, resonant, rigid body, gyroscopic vibration mode in the form

of a precession motion that occurs in a rotor/bearing system. It is described in Sec-

tion 2.3.5. Extra-synchronous whirl excitation refers to two whirl modes at other-than-

wheel speeds: sub-synchronous, which is below the speed of the rotor in question, and

super-synchronous, which is above it. A spinning unbalanced rotor causes a vibration

input at its own wheel speed (spin speed), but there are resonant vibration modes

at frequencies other than the spin frequency. In a multiple flywheel system, a second

rotor provides a direct source of vibration at extra-synchronous speeds.

1.2 Overview

All satellites have electronic equipment which requires electrical energy to run.

Since power from solar cells is not available continuously, satellites need an energy

storage subsystem. During periods of excess power generation, extra energy is stored

in a battery. When the satellite needs more power than the solar cells can generate, it

uses the energy stored in the battery. One alternative to chemical batteries for energy

storage is advanced flywheels. Flywheels have not yet been used for energy storage in

any space missions, but the technology is maturing quickly, and someday they may

be a viable alternative for the satellite designer.

One additional benefit of flywheel-based energy storage is its inherent ability to

control the attitude of a satellite. Many satellites use some form of momentum ex-

change device for attitude control. Since a flywheel system has multiple rotating wheels

it can change the satellite’s attitude by exchanging momentum between flywheels and
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the spacecraft. Thus an IPACS, if well designed, can save weight by combining two

necessary components of the satellite bus.

There are two key performance measures for a satellite energy storage system:

high specific energy and high specific power. In addition, the energy storage system

must meet several requirements in order to be considered for use in space. It must

operate maintenance-free in widely-varying temperature conditions and survive in a

radiation environment. It must perform under these conditions throughout a long

lifetime—often greater than 10 years, with multiple daily charge/discharge cycles

during its entire operational lifetime. It must survive a harsh vibration regime during

launch, without itself creating unwanted vibration in the satellite during operation.

Finally, it must be completely reliable from the beginning of the satellite’s lifetime to

the end.

Batteries, used for energy storage on every satellite, are far from ideal. They can

provide either high specific power or high specific energy, but not both. They have a

limited lifetime, measured not just from the beginning of their service life, but from

the date of manufacture. They also require a carefully controlled thermal environment

to avoid performance loss or even damage. They do excel in a few key areas, however.

They are relatively simple and create zero external disturbances. Most importantly,

the technology is mature and there is a long history of battery usage on satellites.

They have proven to be predictable and reliable when used in a well-designed system.

Flywheel energy storage systems have not yet been used in any space system,

but in some ways their theoretical performance is far better than that of batteries. A

flywheel system is able to satisfy demands for high specific energy and power. It can

theoretically do so without significant degradation for an extremely long life measured

both in time and in charge/discharge cycles—lifetime is a minor design factor, but

some current plans call for flywheels designed to operate for 15 years and 90 thousand
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cycles. A flywheel system can operate in any thermal environment suitable for the

satellite.

Unfortunately for the satellite designer, however, flywheel technology is far less

mature than battery technology. Flywheel systems have not yet been developed at

scales appropriate for satellites. Current systems exist only as bench-top research

units, and the power supplies and drive electronics have not been scaled to an ap-

propriately small size. Also, flywheel systems have not yet demonstrated the required

reliability. Furthermore, rotating unbalanced rotors inherently create vibration which

must be eliminated or at least mitigated to avoid affecting satellite operations nega-

tively.

For attitude control, no direct comparison between batteries and flywheels can

be made. Instead, flywheels can be compared to the entire battery and momentum

exchange attitude control systems. Batteries are intended as energy storage devices

only, and with no moving parts, they offer no attitude control. On the other hand,

any advanced flywheel system is more than adequate to offer attitude control for a

satellite in at least one dimension. Solving all of the other problems of creating a

space-worthy high performance flywheel will ensure that the system is able to control

the rotor momenta sufficiently to orient the spacecraft. Some minor concerns are a

slight oversizing of the system—to ensure sufficient margin for both energy storage

and attitude control—and appropriate geometry and control laws. The control laws

for flywheel attitude control are non-trivial, but engineers have been developing them

for decades and they currently await hardware implementation.

While there are still hurdles in the way of widespread flywheel system adop-

tion on satellites, an incredible array of challenges have already been solved. High

tensile strength carbon fibers enable the creation of light and strong rotors. Actively

controlled contact-free magnetic bearings waste no energy as heat due to friction,
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with minor and controllable system losses in other areas. Advanced brushless motor/

generators allow for very efficient energy storage. Good design and robust computer

control of the bearings and motors enables stability throughout the operating regime.

Two problems that remain are scaling the technology to a reasonable size and ensuring

an acceptable level of system vibration.

After solving all technical problems satisfactorily, there are two remaining steps

to be completed before widespread adoption of advanced flywheels is possible. First,

a reasonably sized, operationally representative unit needs to be built and tested. To

date, most work has been performed on either larger systems or component-wise on

smaller parts. A reasonably sized unit would include all necessary components in a

package small enough to fit in a simple technology demonstrator. Finally, a successful

technology demonstration satellite must be flown to give other satellite designers proof

that flywheels are viable in space.

1.3 Objectives

This thesis will examine the problem of flywheel-induced vibrations on satellites,

focusing on the interactions between multiple imperfect flywheels at varying speeds

and the vibration inputs this imbalance creates for a satellite. Even the most precisely

manufactured flywheels have some residual imbalance. At wheel speeds of high tens of

thousands of revolutions/minute (RPM), this vibration creates a potentially harmful

amount of vibration. Bearings and soft mounts reduce this vibration, but they cannot

completely eliminate it.

In addition to the individual flywheels, the entire IPACS consisting of multiple

flywheels must keep vibration within an acceptable limit. The envelope must include

the interaction of multiple wheels operating at different combinations of speeds. Pre-

vious flywheel vibration research has focused primarily in single-rotor vibration rather
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than vibration interaction. This thesis will develop a linear state-space model to inves-

tigate potential sources of low frequency system excitation caused by beat phenomena

and extra-synchronous whirl excitation as two connected flywheels operate as part of

an IPACS. A linear model is sufficient to prove the existence of gyroscopic vibra-

tion interaction. The model will be used to study a two-flywheel system. However,

the model is flexible enough to be used in future investigations of IPACS with an

arbitrary number of individually oriented flywheels.

This thesis will seek to answer the question of whether the beat frequencies

caused by similar flywheel rotation speeds or the extra-synchronous interactions be-

tween multiple connected flywheels can cause harmful low frequency vibration in an

IPACS. Results will be limited by the model assumptions: fixed-satellite, small an-

gle rotations, linear springs, and limited geometry and input configurations. These

assumptions are described in Section 2.5.

1.4 Organization

This thesis is organized as follows: Chapter I provides a brief overview of the

thesis. Chapter II reviews relevant literature on the subject of flywheels and provides

background information in support of the thesis. The modeling methodology and

validation are covered in Chapter III. Chapter IV details the results of the analysis,

and Chapter V summarizes the conclusions and recommendations.
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II. Background

2.1 Literature Review

A flywheel is a device that stores rotational kinetic energy for later use in the

form of a rotating mass. Flywheels have countless applications, both realized and the-

oretical, but one as yet unrealized application is the use of flywheels onboard a satellite

for energy storage. A flywheel system—at least two wheels would be necessary—could

supplement or even replace the secondary cell electrochemical batteries on the satel-

lite. In addition, with appropriate control algorithms, the flywheel system could be

used to provide both energy storage and attitude control to the satellite. IPACS offers

potential performance benefits and weight savings (and consequently cost savings) to

the satellite designer. Flywheels have practical potential applications on the ground

as well as in space, but this review will be primarily limited to space applications.

As described by Genta, flywheels have been used for millenia, from the inven-

tion of spindles and potter’s wheels. The high inertia of a rotating flywheel smooths

out changes in the motion of a rotating body. Motors often rely on this smooth-

ing for steady output, and many types of motor would not operate at all without a

flywheel (5:3,16).

Flywheels have a long engineering heritage, but Sputnik was only launched in

1957, so the problem of energy storage in space is just over 50 years old. A fly-

wheel energy storage system for satellites was first proposed by Roes only a few years

later (7:17–18).

No IPACS paper would be complete without a reference to Roes. In 1961, he

proposed a flywheel system for satellite energy storage (7:8). He did not consider

using flywheels for attitude control, only for energy storage. The idea of combining

the attitude control and energy storage functions of a flywheel into an IPACS began to
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appear in the early 1970’s in several technical papers from the National Aeronautics

and Space Administration (NASA) Langley Resarch Center (7:17–18).

Early flywheel studies were not limited to the investigation of advanced fly-

wheels. In a 1997 report, Hall states that, “several studies in the 1960’s and 1970’s

indicated that the use of steel flywheels on mechanical bearings would be competitive

with the chemical batteries of the time (7:5).”

Since then, flywheels have been continually studied for space applications. NASA

commissioned the enormously detailed Integrated Power/Attitude Control System

(IPACS) Study in 1974 and a similarly thorough Advanced Integrated Power and

Attitude Control System (IPACS) Study in 1985. Contemporary theoretical system

performance has continued to climb, but not at the rate anticipated by some de-

signers. Practical system performance by necessity lags even further behind. In 1976

NASA predicted a system energy density of 300 W-hr/kg by the year 2000. By 1992,

this prediction was lowered to 100 W-hr/kg with a statement that not all failure

modes or safety needs had yet been identified for such systems (7:10).

Progress has been made in a variety of areas since then, however. Among these

advances in theory and application are high efficiency electric motors, magnetic bear-

ings, composite rotors, and advanced attitude control algorithms. In 1985, Genta

published the seminal Kinetic Energy Storage, which was an attempt to summarize

flywheel engineering efforts for all applications and provide an up to date review of

the subject (5:v).

While much advanced flywheel technology has been developed for aerospace ap-

plications, the benefits are beginning to spread to other industries. By 1996 advanced

flywheels were beginning to be considered for use in several terrestrial applications,

including uninterruptible power supplies and hybrid vehicles (20). The U.S. Navy is

currently using flywheels and associated technology in development and fielding of
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their Electromagnetic Aircraft Launch System to replace steam catapults on aircraft

carriers (3).

Active magnetic bearings are a critical enabling technology for advanced fly-

wheels. In a vacuum they are frictionless, reducing or eliminating many of the prob-

lems otherwise associated with bearings for such high speed devices. The controllable

bearing stiffness can be low, isolating the inherent vibrations caused by an unbal-

anced rotor. In addition, filters and other control algorithms can be used to control

the bearings such that the the vibration isolation is tuned to problem areas (15:2).

At the turn of the century, flight prospects for flywheels looked great. NASA had

been working with with U.S. Flywheel Systems, Inc., TRW, Texas A&M University,

the University of Texas, and Boeing for five years to develop and build advanced

flywheels. These efforts were rewarded in December of 1999 with a successful test run

of their D1 flywheel unit at 60,000 RPM—a then-world record for a magnetic bearing

flywheel. These efforts were intended to lead to a technology demonstration payload

for the International Space Station (ISS).

By 2001, plans were firmly in place for the most promising space-based technol-

ogy demonstration to date. NASA had continued to work on plans for a technology

demonstration, and onboard testing of a Flywheel Energy Storage System for the ISS

was to begin by 2005. A successful test of the system could have led to the eventual

replacement of the station’s batteries (14:2). Unfortunately, funding for this program

was cancelled in 2002 (2), and no further solid plans for a technology demonstration

have been made.

Some residual flywheel development continued, however. In July of 2003, NASA

demonstrated a basic IPACS capability on an air bearing table with two flywheel

modules (19:64). The test setup can be seen in Figure 1. Meanwhile, NASA was

working on the more advanced G2 flywheel module with better performance. This
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was the first flywheel module designed in-house by NASA’s Glenn Research Center.

It had a higher power rating, lower spin losses, and a more generous thermal envelope

than the previous D1 flywheel.

Figure 1: Photo of NASA’s D1 and HSS flywheels demonstrating integrated power
and attitude control, July 2003 (19:64)

In September of 2004, NASA successfully tested the G2 flywheel module to a

speed of 41,000 RPM. G2 is shown in Figure 2 (9:132). Later that month, the same

team placed two flywheel modules (the older D1 and the newer G2) on an air bear-

ing table to demonstrate a full IPACS capability. They succeeded in demonstrating

controllable torque up to ±0.8 N-m and power transfer from 0–300 W. This was a

first for high-power, high-speed IPACS. Since then, however, active efforts towards a

flight-worthy technology demonstration have remained stalled.

With more recent technology advances, some researchers are beginning to de-

sign small IPACS for small satellites with demanding mission profiles. Lappas et al.

discussed this in an article that appears to be the most recent comprehensive review

of IPACS history and literature (12).

The control algorithms for IPACS have been studied very thoroughly, with many

papers written about both energy/power storage and attitude control. Two types of
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Figure 2: Photo of NASA’s G2 flywheel module, tested to 41 kRPM in 2004 (10:95)

attitude control models have been studied: gimbaled CMG-like flywheels and fixed

momentum wheel-like flywheels (7:22). Hall demonstrated that with the minimal mo-

mentum wheel configuration (4 flywheels), the attitude control and energy storage

functions of an IPACS system could be completely decoupled. This simplifies control

development for both functions (6:1894).

To date, the study of IPACS vibrations has been very limited. Previous IPACS

research has focused heavily on control algorithms, assuming rigid bearings and per-

fectly balanced flywheels. In his Ph.D. dissertation, Park studied an IPACS with

flexible magnetic bearings, unbalanced flywheels, and flexible appendages. He used

the imbalances and appendages as inputs to an IPACS to develop control algorithms

and physical means to mitigate problems in an IPACS. He found that wheel-speed

notch filters in the control algorithm and vibration control masses on the end of flex-

ible satellite components could effectively reduce vibration and power surge problems

in the IPACS and consequently in the satellite (15). Park’s physical model was similar
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to the one developed in this thesis, but this thesis investigates instead the interactions

of vibrations between multiple flywheels.

The beat frequency has been studied briefly in rotordynamics. Research per-

formed at the Naval Postgraduate School used the beat frequency as a tuning aid to

match filter frequencies to vibration frequencies (13). The equations of motion for a

rigid body gyroscope are linear, however, and since the beat frequency’s effects on

a linear system are small as shown in Section 2.3.6, there has not been much study

of the effects of beat frequency in flywheel systems. One exception is a NASA in-

vestigation on beat frequency effects caused by pulse width modulation of position

sensor signals for a magnetically suspended flywheel rotor, but this model dealt with

non-linear effects rather than linear physical behavior (11).

While IPACS vibration has been largely neglected, the study of a single fly-

wheel’s vibration is completely within the realm of rotordynamics, which is very well

studied and is applicable to a wide variety of modern mechanical systems. Vance’s

Rotordynamics of Turbomachinery is one of the early comprehensive books on the sub-

ject (22:iv). Research in the field of rotordynamics is ongoing, and with the advent of

realizable controlled magnetic bearings, the state of the art continues to advance.

IPACS research has been ongoing for 50 years now, and no immediate demon-

stration is planned. The main obstacle in the way of a successful flight demonstration

is the complexity the problem—using an advanced and dynamic system to perform

two unrelated tasks. While many of these complications have been studied and some

of them have been mitigated, the vibration interactions between multiple flywheels in

one IPACS have been neglected. This thesis seeks to provide a look into the problem

of vibration interaction in order to determine whether it will be a problem for IPACS

in space. To peform this study, a flexible dynamics model is developed that will enable

research into vibrations of multiple gyroscope systems.
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2.2 Coordinates and Nomenclature

There are two types of coordinates used in this model: wheel-aligned and global.

Both coordinate frames are right-handed in x, y, and z, with corresponding rotations

θx, θy, and θz.

The wheel-aligned coordinates are oriented such that the z axis is along the

flywheel spin axis for the wheel in question. The spin axis always points away from

the support structure, which is the system center of mass (COM). The x and y axes

are arbitrary in this coordinate frame since all inputs and outputs are cyclical in

nature about z. All discussions of individual flywheels refer to these local coordinates,

including all imbalance-induced input forces and wheel speeds.

The global coordinates are arranged with z “up”. This coordinate frame is

arbitrarily aligned. All system level references—including all response plots shown in

this thesis—will use the global coordinate system. Model inputs are applied internally

in the global frame. Coordinate systems are arranged as shown in Figure 3.

θx
y

z

θz

θy
x

(a) Global Coordinates

θx
y

z

θz

θy
x

(b) Wheel-aligned Coordinates

Figure 3: Coordinate systems used in this thesis

Nomenclature is defined as it is introduced, as well as appearing in a nomen-

clature section at the beginning of this thesis. A few terms are potentially confusing,

so a preview of them is in order here. Rotation angles θx,y,z are defined as shown in
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Figure 3. θ is the vector of rotational states

([
θx θy θz

]T)
, which are rotations

about x, y, and z, respectively. In the discussion of flywheels and rotors, wheel rota-

tion and speed are of particular importance, so θ with no letter subscript will refer to

the rotation angle of a rotor. Similarly, ω with no letter subscript will refer to rotor

speed, which would otherwise be referred to as θ̇z.

Furthermore, there are three sets of units in widespread use to describe rota-

tional speed: rad/s, RPM, and Hz or revolutions/second (RPS). Flywheel dynamics

must be calculated in radians, but discussion is more intuitive in units of Hz or

RPS. Finally, system-level discussions of high-speed advanced flywheels commonly

uses units of RPM. The model developed in this thesis uses units of radians and

rad/s internally, but most discussion of wheel speeds in this paper will be in terms of

Hz and RPS.

2.3 Fundamental Equations

Understanding of several basic sets of equations is required for the study of

flywheel motion. A quick overview of some of these concepts is provided here.

2.3.1 Equation of Motion for a Gyroscopic Body. In this model, flywheels are

modeled as gyroscopic rigid bodies. The equation of motion (EOM) for a gyroscopic

rigid body is shown in matrix form in Equation 1 (18:124). Equation 1 also describes

the equation of motion for a non-spinning rigid body since gyroscopic stiffness, G, is

a function of wheel speed, ω, and it is zero for a non-spinning body.

Mq̈(t) + (C + G (ω(t))) q̇(t) + Kq(t) = u(t) (1)
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where the state vector q =

[
rT θT

]T
is composed of r = [x y z]

T and θ =

[θx θy θz]
T, u is a vector of input forces, M is the mass matrix described in terms

of body mass m and directional MOI Ix,y,z. If the body is represented as a point

mass, M is the diagonal matrix M = diag

([
m m m Ix Iy Iz

])
. K and C are

the stiffness and damping matrices between the body and external nodes, and, when

described in wheel-aligned coordinates, G is the sparse skew-symmetric gyroscopic

matrix shown below.

G =



. . .
...

0 −Izω 0

. . . Izω 0 0

0 0 0


.

In the simple case of a single body connected by springs to a fixed support,

stiffness would be written as K = −diag

([
kx ky kz κθx κθy κθz

])
with trans-

lational and rotational stiffnesses k and κ, respectively. Likewise, damping of a single

body would be described by C = −diag

([
cx cy cz Cθx Cθy Cθz

])
with trans-

lational and rotational damping of c and C.

In this model, however, the bodies will be connected not to fixed supports, but

to each other. Proper modeling of this inter-body stiffness requires the use of different

(and more complicated) stiffness and damping terms. These inter-body stiffness and

damping terms are only applicable to a system rather than to individual rigid bodies,

and they will be discussed in Section 3.3.1.

2.3.2 State-Space Equation of Motion. State-space representation is a con-

venient format for writing and solving linear differential equations, and it is the form

that will be used for the model in this thesis. In general, a linear system can be
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described in state-space according to Equation 2 (17:210). Note that the notational

dependence on time is dropped for convenience.

q̇ = Aq + Bu (2)

where A is the state matrix that describes system behavior and B is an input matrix

linking input forces to states.

Equation 3 below shows Equation 1, the gyroscopic EOM, in state-space form

with the addition of an input matrix, B. Note that the entire matrix EOM is found in

the second half of this equation; the top half is simply a computational convenience.

q̇
q̈

 =

 0 I

M−1K M−1(C + G)


q
q̇

+

 0

M−1B

u (3)

2.3.3 Rotated Equation of Motion. If the flywheel EOM is known in the

wheel-aligned coordinate frame, but the integration is to be carried out in a different

global coordinate frame, Equation 3 must be rotated accordingly. Recalling that the

entire matrix EOM is found in the second half of the state-space equation, the correct

application of the rotation matrix R is shown below in Equation 4. Proper rotation is

required when a collection of bodies with different local coordinate frames is integrated

into one state-space system.

q̇
q̈

 =

I 0

0 R


 0 I

M−1K M−1(C + G)


I 0

0 RT


q
q̇

+

 0

RM−1BRT

u (4)
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2.3.4 Centripetal Force. The primary input in this model will be the vibra-

tion caused by an unbalanced spinning flywheel rotor, which is a centripetal force.

Equations 5 and 6 show the equations for centripetal acceleration, ac, and its associ-

ated force, fc in polar coordinates (1:75–76).

ac = −ρω2 (5)

fc = −eω2 = −mρω2 (6)

where eccentricity e represents rotor mass m and the distance between the flywheel’s

COM and the center of the shaft, ρ. Wheel speed is again represented by ω. The

distance ρ is shown in Figure 4. The vectors e and ρ point from the center of mass

to the flywheel shaft.

ρ

Figure 4: A spinning flywheel of mass m with COM–shaft distance ρ creates a cen-
tripetal input force proportional to eccentricity e = mρ

2.3.5 Natural Frequencies of a Rotor/Bearing System. The IPACS model in

this thesis will be used to evaluate vibration interactions. One potentially troublesome

vibration is resonant frequency excitation of the flywheels. Rigid rotors have several
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vibration modes, and those are briefly explained here. In this brief discussion of natural

frequencies, ω1–ω4 will refer to natural frequencies of the rotor/bearing system, and

ω with no subscripts will refer to wheel speed.

When a rigid rotor is restrained in the x and y directions by springs of stiffness

K as shown in Figure 5, the EOM from Equation 1 can be simplified to the forms

shown below in Equations 7–10.

mẍ+ 2kx = 0 (7)

mÿ + 2ky = 0 (8)

IT θ̈x + IPωθ̇y +
1

2
kL2θx = 0 (9)

IT θ̈y − IPωθ̇x +
1

2
kL2θy = 0 (10)

where m = rotor mass, L = rotor length, and It and Ip are the transverse and polar

MOIs, respectively (22:125).

The natural frequencies, ωn, of the rigid body rotor/bearing system shown in

Figure 5 and described in Equations 7–10 are shown in Equations 11–13. Recall that

ω represents angular rotor speed.

ω1 = ω2 =

√
2K

m
(11)

ω3(ω) =
IP
2IT

ω +

√
KL2

2IT
+

(
IP
2IT

ω

)2

(12)

ω4(ω) =
IP
2IT

ω −

√
KL2

2IT
+

(
IP
2IT

ω

)2

(13)

Natural frequencies ω1 and ω2 correspond to translational vibration modes in

the x and y directions. Frequencies ω3 and ω4 correspond to the forward and backward
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Figure 5: A long rigid rotor constrained by springs in x and y

whirling modes, respectively. Whirling is a precession-like motion. Forward whirl (ω3)

is rotation in the same direction as wheel spin, as shown in Figure 6. Backward whirl

(ω4) is rotation in the opposite direction.

Modes 1 and 2 are constant and identical. They represent “bouncing” in the

x and y directions. There is no angular motion associated with these modes. The

frequency of these modes is solely a function of bearing stiffness and rotor mass.

Modes 3 and 4 are, respectively, the speed-dependent forward and backward

conical whirling motions. With a wheel speed of zero, ω3(0) = ω4(0) = ωT =
√

KL2

2IT
,

which is the natural rigid body pitching/yawing frequency. Rigid body vibration at

this frequency will be simple pitching or yawing about θx or θy.

As rotor speed, ω, increases, the pitching and yawing motions become whirling

motions, and the frequencies of the forward and backward whirls diverge from ωT , with

forward whirl speed increasing and backward whirl speed decreaseing. As wheel speed

approaches infinity, ω3 approaches P and ω4 approaches 0. P is the ratio IP/IT (polar
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ω z

x y
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Figure 6: Depiction of forward whirling motion

MOI/transverse MOI), which represents rotor configuration. For a short coin-like disc

or hoop, P = 2. For an infinitely long rotor, P = 0 (22:126).

Figure 7 shows the normalized natural frequencies of the forward and backward

whirl modes, respectively. Recall that ωT , the natural rigid body pitching/yawing

frequency is
√

KL2

2IT
. Backward whirl has a negative frequency value because it is

in the direction opposite wheel spin. These modes are dependent on P , the rotor

configuration (22:127).

Of the whirl modes, ω3 is the mode most easily excited by rotor imbalance.

Figure 7(a) shows that short rotors are not self-exciting for forward whirl, but long

rotors have a critical coning frequency where the wheel frequency is synchronous with

the whirl frequency. The critical coning frequency, ωcon is found by setting ω ≡ ω3 in

Equation 12, resulting in Equation 14.

ωcon =

√
ω2
T

1 − P
(14)
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Figure 7: Normalized whirl modes for various flywheel rotor configurations. Dotted
line for forward whirl shows where whirl speed is synchronous with wheel
speed. Natural rigid-body pitching frequency ωT is used to normalize plots
for all rotor/bearing configurations (22:128)
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Operation near the critical coning frequency can be unstable, although momen-

tarily passing through this region is acceptable, allowing operation in supercritical

regions (21:354). For long rotors (P < 1), this critical frequency must be kept low

enough to be out of the operating range of the rotor. Shorter rotors (P > 1) do not

have this problem, but an outside excitation at the coning frequency could be haz-

ardous. Outside excitation at critical coning frequencies is examined in this paper for

both short and long rotors, which are the sub- and super-synchronous rotor frequency

problems.

Natural frequencies ωn as found in Equations 11–13 are described in units of

rad/s. For the remainder of this thesis, natural frequencies will be instead described

in units of Hz as fn, where

fn =
ωn
2π

(15)

This terminology will eliminate any confusion between wheel speeds (described as ω)

and the natural frequencies.

2.3.6 Beat Frequency. For linear systems, the response of a system to two

inputs can be found by adding the system’s response to the individual inputs. This

superposition can yield a stronger or weaker response than either signal individually,

depending on whether the sum of the responses is positive or negative, creating either

constructive or destructive interference.

When waveforms of two frequencies (ω1, ω2) differ in frequency by a small

amount δ, (ω2 = ω1 + δ), the wave which results from their combination will exhibit

what is known as a beat phenomenon due to alternating constructive and destructive
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interference. Using the relationship

sinA+ sinB = 2 sin
A+B

2
cos

A− Y

2
,

the sum (y1 + y2) of two displacements

y1 = sinω1t

y2 = sinω2t = sin (ω1 + δ)t

can be written as shown in Equation 16 (16:23).

y = y1 + y2 = 2 sin

(
ω1 +

δ

2

)
t cos

(
δ

2

)
t (16)

Figure 8 shows an example of a beat frequency created by the superposition of

two waves with similar frequencies. The resultant waveform is a sine wave of frequency

ω = ω1+ω2

2
which is shaped by the envelope described by ±2 cos

(
δ
2

)
t. This envelope

has a much lower frequency than either of the original waves.

When two signals are combined in a linear system they are superimposed addi-

tively. In order to see system excitation at the beat frequency, there would have to be

some non-linear process allowing the input frequencies to be multiplied. Otherwise,

there will be no change in frequency. This lack of excitation at the beat frequency

should manifest itself in a lack of energy at the beat frequency in a power spectral

density (PSD) plot. The signal shown in Figure 8 was analyzed with the Matlab®

pwelch command to create the PSD plot shown in Figure 9.

As expected, Figure 9 shows that the signal in Figure 8 has energy at both input

frequencies, but there is no system energy at the beat frequency of 5 Hz. In linear
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Figure 8: Beat phenomenon created by inputs of frequency 30 and 35 Hz
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Figure 9: Power spectral density plot of the signal shown in Figure 8. Note the lack
of energy at the beat frequency of 5 Hz
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systems there should be no excitation at this beat frequency, even if some connected

structure has a natural frequency close to the beat frequency.

2.4 Model

The model used in this thesis represents two advanced flywheels mounted to

a support structure and nominally spinning in opposite directions. The rotors are

mounted with active magnetic bearings, and their operating speed range is 20,000–

60,000 RPM (333–1000 RPS). They are powered by high-efficiency motor/generators.

The rotors nominally spin at the same speed to store energy, changing speed relative

to each other to control the attitude of the satellite.

2.5 Scope

The model developed in this thesis relies on several assumptions to limit the

scope of the analysis. The only source of vibration studied is rotor imbalance. There

are multiple other real sources of vibration including torque ripple, sensor error, band-

width limitations, and external vibrations. These additional vibration sources are ig-

nored.

Also, this model does not take into consideration any motion of the satellite.

In a satellite with an IPACS, the satellite body will be free to rotate, and can be

controlled by the varying rotation rates of the flywheels. In the model used in this

thesis, the IPACS is subjected mainly to symmetric or periodic disturbing forces from

a static equilibrium state, and it does not experience large rotations. When necessary,

a spring is used to enforce small angles. The spring constraint makes the use of small

angle approximations for IPACS rotation appropriate and allows for a simpler linear

analysis. Similarly, this model does not account for any rotor translation along or

rotation about the axis of the flywheel, except that the gyroscopic stiffness increases
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with increasing rotor speed. The bearings in this model are assumed to be linear

springs, as opposed to the controllable magnetic bearings of an actual IPACS.

Even the best control model will be unable to completely filter out all dis-

turbances such as rotor imbalance due to limitations such as signal bandwidth and

control saturation. This model assumes a small residual amount of rotor imbalance

that cannot be filtered out and examines the interactions between multiple residual

imbalances. Therefore, the input and output forces are small.

The scope of this analysis is also limited to rigid flywheel rotors. There are

higher bending modes associated with flexible rotors, but the first four vibration

modes discussed in Section 2.3.5 are dominant—bending modes are typically above a

frequency of 1 kHz (15:35).
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III. Methodology

3.1 Overview

This thesis will use an analytical model to study the vibration interaction of

multiple gyroscopes. Vibrations can come from several sources, but this thesis will

examine only those caused by unbalanced flywheels. The model will be numerically

integrated using the ode45 command in Matlab®.

3.2 Model Description

3.2.1 Model Construction. The model used in this thesis is a system of two

flywheels and a support structure as shown in Figure 10. The flywheels are axially

aligned, with opposite spin directions. The flywheels are arranged such that the system

COM and the support COM are co-located.

ω

ω

x,θx y,θy

z,θz

Figure 10: Basic configuration of the model used in this thesis

The flywheels are each connected to the support structure with two magnetic

bearings, as shown in Figure 11. Flywheels of length l and radius r are located at

distance d from the support COM and supported at each end by a magnetic bearing.

The magnetic bearings have only translational stiffness, but having one of them at
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each end of the rotor will create an effective rotational stiffness. The stiffnesses in

the transverse (x and y) and axial (z) directions are separate and not necessarily

related. In this thesis, however, axial displacements are ignored, so the axial stiffness

is unimportant. When damping is accounted for in this thesis, all springs shown

represent bearings with both stiffness and damping.

d

r

x,θ y,θ

z,θ

yx

z

l

Figure 11: Flywheel in housing connected to IPACS support structure

The model is simplified by replacing each body with a point mass as shown

in Figure 12. There is one 4 degree of freedom (DOF) spring (and damper) located

at the flywheel’s COM, which is attached to the support structure with a rigid link.

The spring shown has transverse translational (x and y) and rotational (θx and θy)

stiffness.

For a flywheel of length l with individual magnetic bearing stiffness kmag, the

model will have linear stiffness kmodel = 2kmag and transverse rotational stiffness

κT,model = 1
2
kmagl

2 (22:125). Damping is similar: cmodel = 2cmag and CT,model = 1
2
cmagl

2.
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y,θ
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z

Figure 12: Model of support/flywheel connection. Bodies are point masses separated
by distance d

The two flywheels are attached to the support structure as discussed previously

and illustrated again in Figure 13. Also shown is a connection to the satellite, which

represents a soft mount between the support structure and the rest of the satellite.

Since all forces studied are periodic or symmetric about the system and support struc-

ture COM, the support will primarily experience rotations rather than translations.

For this reason, the satellite/support spring is modeled as a 3 DOF spring with only

rotational stiffness. The satellite in this model is assumed to be heavy enough that

it can be considered fixed. For most validation runs, the satellite/support spring was

turned off to allow free rotation of the satellite.

Finally, an appendage can be added to the model. The appendage represents a

flexible spacecraft structure such as a solar array or antenna, and it is used to study

low frequency excitation. The appendage is shown in Figure 14. The appendage and

support structure COMs are co-located, and they are connected by a 2 DOF spring

with only transverse (θx and θy) rotational stiffness.

3.2.2 Model Inputs. The sources of vibration in this model will be rotor

imbalances. Real rotors can have very small imbalances if they are manufactured
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satellite
(fixed)

Figure 13: System model with satellite included. The satellite/support spring can be
turned off if needed

x,θ y,θ

z,θ

yx

z

Figure 14: Model of appendage, which is connected to the support structure with only
a rotational spring
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with tight tolerances, but imbalances will always be present after manufacturing. The

rotors in this model will be assumed to be imbalanced in such a way that they cause

a purely two-dimensional vibration: linear (in x, y) or rotational (in θx, θy). These

imbalances are shown conceptually in Figure 15. The axially symmetric imbalances

in a real rigid rotor can be described as a combination of these two imbalances, but

they will be examined individually in this model.

x,θ y,θ

z,θ

yx

z

(a) Linear (b) Rotational

Figure 15: Two sources of axially-symmetric imbalance-induced vibration

The rotating imbalance creates a centripetal force as discussed in Section 2.3.4.

For this model the rotor eccentricities are replaced with an ideal rotor plus periodic

input forces synchronized with wheel position and proportional to eccentricity and

the square of the wheel speed.

3.2.3 Model Parameters. The flywheel for this model is a theoretical flywheel

only, but it is intended to be realistically sized. Flywheel parameters are given in

Table 1.

Magnetic bearing stiffness and damping are similar to those used in some NASA

studies (4). The nominal mass properties are described in Hibbeler’s text (8). They

are defined here in such a way that they describe a short rotor
(
P = IT

IP
> 1
)

to study

super-synchronous whirl. When necessary, IT is changed to adjust the rotor parameter
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Table 1: Flywheel model parameters

mag bearing stiffness kmag 1756 kN/m
mag bearing damping cmag 3.512 kN/m/s
rotor mass m 10 kg
rotor length l 20 cm
support/rotor distance d 15 cm
rotor radius r 15 cm
rotor shaft/COM distance ρ 0.01 nm
model translational stiffness kmodel 3512 kN/m
model rotational stiffness κmodel 35.12 kN-m/rad
model translational damping cmodel 7.024 kN/m/s
model rotational damping Cmodel 70.24 N-m/rad/s
transverse MOI IT 0.0896 kg-m2

polar MOI IP 0.1125 kg-m2

rotor MOI ratio P 1.2558 -

P . This adjustment is made to study longer rotors when looking for sub-synchronous

whirl. The COM–shaft offset distance, ρ was chosen to give similar disturbance inputs

to the residual disturbances found by Park (15:87). The mass properties of the support

structure are shown in Table 2.

Table 2: Support structure parameters

mass m 10 kg
MOI Ix,y,z 10 kg-m2

3.3 System Equation of Motion

3.3.1 System Equation of Motion Components. When a system of indepen-

dent, unconnected, gyroscopic rigid bodies is described in state-space as shown in

Equation 2, it takes the form of the block diagonal matrix shown in Equation 17.

The stiffness and damping terms here represent each body being connected to a fixed

body.
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q̇ =


A1 . . . 0

...
. . .

...

0 . . . An

 q +


B1

...

Bn

u (17)

where the state vector q =

[
q1

T . . . qn
T

]T
, qi =

[
ri

T θi
T vi

T ωi
T

]T
, and Ai

and Bi are defined according to Equations 18 and 19, similar to Equation 4. ri and

θi are the position (x, y, z) and rotation (θx, θy, θz) vectors of the bodies, respectively,

and vi and ωi are the corresponding translational and rotational velocities.

Ai =

[
Ri

] 0 I

M−1
i Ki M−1

i (Ci + Gi)

[RT
i

]
(18)

Bi =

[
Ri

] 0

M−1
i Bi

[RT
i

]
(19)

A system of connected rigid bodies is described by the same equation of motion

given in Equation 17 plus the addition of non-block diagonal stiffness terms in the

A matrix. In the case of this model, the stiffness between each flywheel and the

support structure is identical in the local axially aligned frame. This common stiffness

matrix can be derived using the spring equation with the help of a diagram of system

displacements. With the support and the wheel modeled as point masses, a simple

diagram of displacements in x is shown in Figure 16, which is a simplification of the

housing support structure. Small angles are assumed.

Figure 16 is used to determine the inter-body spring forces caused by system

displacements according to F = −kx. The bodies are modeled as point masses. Angles
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xj*=xi +θy,id

xj xi

θy,i

θy,j

z,θ

x,θx

z

: wheelj

: supporti

d

Figure 16: System displacements in x. Bodies i and j are point masses. This diagram
is used to determine spring forces between bodies i and j in the x direction.
The flywheel (j) is attached to the end of a rigid link length d extending
from the support structure (i)

are assumed to be small, so sin θ ≈ θ and cos θ ≈ 1. x∗j describes the displacement of

the rotor support structure in the x direction. The rotor’s position in x is defined as

xj. The x direction resultant spring force on mass i due to the displacements shown

in Figure 16 is given below in Equation 20.

ΣFx = −kx(xi + θy,id− xj) (20)

Simlarly, the resultant torques on mass i about the y axis are described below

in Equation 21.

ΣTy = −κy(θy,i − θy,j) − kd(θy,id+ xi − xj) (21)
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The remaining resultant forces and torques on mass i can be determined by

analogy or by the construction of a similar diagram. The forces and torques on mass i

in y and θx are shown below in Equation 22. Since this model ignores rotor motion in

z and θz, those equations are not listed.

ΣFy = −ky(yi − θx,id− yj) (22)

ΣTx = −κx(θx,i − θx,j) − kd(θx,id− yi + yj)

Likewise, the forces acting on mass j (the flywheel) are shown below in Equa-

tion 23.

ΣFx = −kx(xj − xi − θy,id) (23)

ΣFy = −ky(yj − yi + θx,id)

ΣTx = −κx(θx,j − θx,i)

ΣTy = −κy(θy,j − θy,i)

Equations 20–23 can be represented in matrix form as shown in Equation 24

where i, j are the bodies being connected. They describe the forces applied to the

bodies by various system displacements.

f i
f j

 =

 Ki,i Ki,j

Kj,i Kj,j


qi
qj

 (24)

35



Ki,i =



−kT 0 0 0 −kTd 0

0 −kT 0 kTd 0 0

0 0 0 0 0 0

0 kTd 0 −kTd2 − κT 0 0

−kTd 0 0 0 −kTd2 − κT 0

0 0 0 0 0 0



Ki,j =



kT 0 0 0 0 0

0 kT 0 0 0 0

0 0 0 0 0 0

0 −kTd 0 κT 0 0

kTd 0 0 0 κT 0

0 0 0 0 0 0


Kj,i = KT

m,n

Kj,j =



−kT 0 0 0 0 0

0 −kT 0 0 0 0

0 0 0 0 0 0

0 0 0 −κT 0 0

0 0 0 0 −κT 0

0 0 0 0 0 0



For this model, mass i is always the support structure, so i ≡ 1. This 12 x 12

stiffness matrix is separated into four parts which are placed into the global system

A matrix in the appropriate locations.
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The damping matrix, C, is treated the same way. This model uses damping

proportional to stiffness to represent the losses in the system. This is represented by

C = ξK, where ξ = 0.002, which is reflected by the values in Table 1.

3.3.2 System Equation of Motion Assembly. Recalling Equations 2 and 17,

a state-space system EOM is written as

q̇ = Aq + Bu

Both A and B are assembled from their component parts, which are described

in Section 3.3.1. This can also be represented as shown in Equations 25 and 26.

A = M−1
system (AG + AK + AC) (25)

B = M−1
systemBsystem (26)

where

M−1
system =



I 0

0 M−1
1

. . .

I 0

0 M−1
n
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AG =



0 I

0 G1

. . .

0 I

0 Gn



AK =



0 0 0 0 0 0

ΣK1,1 0 K1,2 0 K1,n 0

0 0 0 0 0 0

K2,1 0 ΣK2,2 0 K2,n 0

. . .

0 0 0 0 0 0

Kn,1 0 Kn,2 0 ΣKn,n 0



AC =



0 0 0 0 0 0

0 ΣC1,1 0 C1,2 0 C1,n

0 0 0 0 0 0

0 C2,1 0 ΣC2,2 0 C2,n

. . .

0 0 0 0 0 0

0 Cn,1 0 Cn,2 0 ΣCn,n
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Subscripts on stiffness and damping terms are the i, j subscripts found in Equa-

tion 24. Placement of each term is determined from Equation 18. AK and AC of

Equation 25 are more general than the model requires. Since the only connections

in the model are between body 1 (the support structure) and other bodies, many of

the terms shown in these general equations are unnecessary, leading to the simplifi-

cation of AK as AK
∗ as shown below, where all of the off-diagonal terms not along

the first row or column are zero. AC
∗ is similar. The stiffness term for the support

structure, ΣK1,1, also contains the stiffness between the fixed satellite bus and the

support structure.

AK
∗ =



0 0 0 0 0 0

ΣK1,1 0 K1,2 0 K1,n 0

0 0 0 0 0 0

K2,1 0 K2,2 0 0 0

. . .

0 0 0 0 0 0

Kn,1 0 0 0 Kn,n 0



The input matrix B is simpler. It links each of the states with an input un. The

column and row of a B term determine which input force is applied to which state,

respectively. Because the EOM is represented in the second half of each body’s state

vector, that is where the inputs are applied.
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Bsystem =



0

B1

...

0

Bn


(27)

This model incorporates rotating centripetal force inputs synchronized to the

rotation of each flywheel. The input vector describing each of these terms is shown in

Equation 28.

u =

[
e1ω

2
1 sin θ1t e1ω

2
1 cos θ1t . . . enω

2
n sin θnt enω

2
n cos θnt 1

]T
(28)

As Equation 28 shows, the input vector has two centripetal force terms for each

wheel, and they are 90◦ out of phase from each other. The magnitude of the force is

eiω
2
i , and the force acts in the direction of the current wheel rotation, θi. In the model

this is divided into x and y (or θx and θy) inputs, which vary periodically with sin θi

and cos θi. The last term, 1, is used to allow for a constant force input for validation

purposes. This vector is used for all model input. Different system input cases are

created by applying forces (imbalances or a constant force) to various states with

changes in the input matrix B.

3.4 Integration

The model created in Matlab® is integrated numerically using ode45. The

differential equation created by the state-space model is kept as small as possible

because it must be integrated over many iterations. Some components of the system
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EOM, however, are functions of time. Both the gyroscopic matrix G and the force

vector u are time dependent and they must be recomputed for each iteration of the

integration.

In addition, careful attention must be paid to the application of rotating input

forces. A periodic rotating input force is represented in two linear dimensions as a sine

wave in one dimension and a cosine wave in the other dimension. If these forces are

directly applied to an unconstrained mass initially at rest, they can cause a secular

drift in one direction. This phenomenon occurs in the model used for this thesis (but

not the actual system). One solution to minimize the effect of the secular drift is

described in Appendix A.

3.5 Additional Components

3.5.1 Appendage. The addition of a flexible appendage is accommodated by

adding another body to the model. An appendage is used to study the beat phe-

nomenon as it applies to this model. Since the studied effects of this appendage are

limited to θx and θy, the appendage is only connected to the model with torsional

springs. Also, the only relevant mass properties are Ix and Iy. These properties, which

were chosen to give the appendage a natural frequency of 5 Hz, are shown in Table 3.

Table 3: Appendage mass properties

mass Ix,y 10 kg-m2

transverse MOI κT 9869 N-m/rad

In the model, the appendage is added as a new body with mass Mapp =

diag

([
1 1 1 10 10 1

])
and stiffness Kapp defined according to Equation 24,

with all terms except κT
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3.5.2 Satellite/support spring. When required, a spring is connected between

a firm fixed satellite and the support structure. Since input forces are cyclical and

cause primarily rotations in the support structure, it is the rotational DOFs that be-

come problematic and require constraints. This additional spring is attached to K1,1,

as discussed in Section 3.3.2, and takes the form Ksupport = −1×106diag

([
0 0 0 1 1 0

])
.

3.6 Validation

3.6.1 Validation Inputs. A simple IPACS model was created for validation

purposes. The flywheel properties for this model are shown in Table 4. This model

has a long rotor, so it will have a critical coning speed.

Table 4: Validation model flywheel properties

rotor mass m 10 kg
rotor length l 0.5 m
rotor radius r 0.12 m
support/rotor distance d 1 m
mag bearing stiffness kmag 2500 N/m
polar MOI IP 0.0781 kg-m2

transverse MOI IT 0.2474 kg-m2

rotor MOI ratio P 0.3158

For validation, several test inputs were given to the model and the responses

were verified. First, a few constant-direction forces were applied to ensure that signs

were correct and that the model components were assembled correctly. Exponential

rotational growth due to a constant applied torque is shown in Figure 17. Figure 17

and all similar figures show a time history of each system displacement for each wheel.

All responses are shown in global coordinates.

The next set of tests were performed to ensure the model’s consistency in ac-

counting for wheel spin direction. One wheel at a time was given an imbalance input
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(a) Wheel speed: 0 (b) Input force: as
shown

Figure 17: System demonstrating exponential displacement growth due to a constant
torque input applied to θx
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to test the response of that wheel and the system. These tests are shown in Figures 18

and 19. In both figures, the whole system is rotating together slowly as a result of the

rotating imbalance, as expected.

(a) Wheel speed: 0/5 RPS as shown

ω

x,θ y,θ

z,θ

yx

z

(b) Input force: as
shown

Figure 18: System demonstrating forward whirl

(a) Wheel speed: 5/0 RPS as shown

ω

x,θ y,θ

z,θ

yx

z

(b) Input force: as
shown

Figure 19: System demonstrating backward whirl

The 90◦ phase shift between the θx and θy rotations reveals that this vibration is

a coning motion. When θx leads θy, as seen in Figure 18, the system is whirling counter-

clockwise as viewed from “above” (looking from the positive z direction towards the

origin). This motion is a forward whirl for wheel 1, since that rotor is spinning in

this direction. It is a backward whirl for wheel 2, since the nominal spin direction of
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rotor 2 is opposite that of wheel 1. When θy leads θx, the system is rotating in the

opposite direction and the whirl orientations are reversed. This response was studied

with the normal system model, not the validation model.

Next the system’s natural frequencies were examined. The first three natural

frequencies of a rotor-bearing system are given in Equations 11–13 and 15. Recall that

f1 = f2 are bouncing modes, and f3 and f4 are forward and backward whirling modes.

The system responses demonstrating f1–f4 are shown in Figures 20–24. Figure 20

demonstrates the bouncing mode f1 = f2.
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y,θy

z,θz

(b) Initial state:
as shown

Figure 20: System demonstrating bouncing vibration at f1 ≈ 6.16 Hz

Equation 11 gives the natural frequency of a spring-mass system as f1 =
√
k/m/2π.

The model’s two flywheels were displaced symmetrically to make the system equiv-

alent to a free two-body system. The equivalent mass of a freely vibrating two-body

system can be found by meq =
(∑n

i=1m
−1
i

)−1
. With a 10 kg support structure and

two 10 kg flywheels, the system equivalent mass is 6.66 kg and f1 = f2 ≈ 6.16 Hz.
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Figure 21 shows the expected forward and backward whirl speeds of the valida-

tion model. By inspection, when wheel speed is zero, f3 = f4 ≈ 5.66 Hz, which agrees

with Equation 12. At a wheel speed of 10 RPS, f3 ≈ 7.36 Hz and f4 ≈ 4.40 Hz.
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Figure 21: Whirl modes of the validation system. Dotted line is synchronous with
wheel speed

Figure 22 shows that the forward whirl mode behaves as expected with flywheel

speed ω = 0. Backward whirl at this speed is identical except for direction, which

appears as an opposite phase difference in θx and θy.

The whirl modes are dependent on wheel speed and they diverge with increasing

wheel speed. Figures 23 and 24 show the whirl modes when wheel speed is 10 RPS.

f3(10 Hz) ≈ 7.36 Hz and f4(10 Hz) ≈ 4.40 Hz. In both cases the system whirl is in

the same direction (counter-clockwise as viewed from “above”), but the wheel speed

directions were changed as necessary to make these forward or backward whirling

motions.
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Figure 22: Forward whirl with zero wheel speed: f3 = f4 ≈ 5.66 Hz. Backward whirl
is identical except for direction
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Figure 23: Forward whirl mode at f3 ≈ 7.36 Hz when wheel speed is 10 RPS
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Figure 24: Backward whirl mode at f4 ≈ 4.40 Hz when wheel speed is 10 RPS

Forward whirl f3 is speed dependent and, for a long rotor, there is a critical con-

ing speed where the whirling frequency is the same as the wheel frequency. Figure 25

demonstrates this phenomenon. Wheel speed is varied from 4–12 RPS, and vibration

is much worse at the critical coning frequency fcon ≈ 6.8 Hz. The difference between

the support structure’s vibration in θx and θy is a modeling artifact.

3.7 Summary

The model developed for this thesis was tested and performed correctly given a

variety of input scenarios, including initial conditions, constant forces, and periodic

forces. Critical coning frequency was demonstrated successfully, as well as forward

and backward whirls.
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Figure 25: Model demonstrating the critical coning frequency. As the wheel speed
passes through fcon ≈ 6.8 Hz, the vibration amplitude gets much larger.
Wheel speed varies linearly from 4 RPS at t=4 to 12 RPS at t=12
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IV. Results and Analysis

Several tests were conducted using the model described in this thesis, and the results

are presented here. First, a full frequency sweep was performed to see if any imme-

diate problems arose. Other tests examined the existence of beat phenomenon and

extra-synchronous whirl excitation. For this section, flywheel-specific rotation speed

is represented as ωn.

4.1 Full Envelope Sweep

First a variety of full envelope frequency sweep tests were carried out. For these

tests, wheel speed of one or both rotors varied from 333–1000 RPS. A moment-

inducing imbalance in each rotor caused a vibration input synchronized with each

wheel speed.

These tests revealed nothing of interest except that the system’s gyroscopic

stiffness diminishes as the wheel speeds approach equality in opposite directions. This

reduction in gyroscopic stiffness is illustrated nicely in Figures 26–28.

x 10x 10x 10

Figure 26: System rotations as a result of moment-inducing imbalance vibrations.
Wheel speeds: ω1 = 333, ω2 = 333–1000 RPS
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Figure 27: System rotations as a result of moment-inducing imbalance vibrations.
Wheel speeds: Wheel speeds: ω1 = 1000, ω2 = 333–1000 RPS

Figure 28: System rotations as a result of moment-inducing imbalance vibrations.
Wheel speeds: ω1 = 1000–333, ω2 = 333–1000 RPS
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The system response clearly changes frequency in each case. The time-varying

long-period wobble in the system is caused by the sudden application of the input

forces, which causes a slight misalignment between the angular momentum vector

and the flywheel rotation axes. The system angular momentum vector gets larger as

the flywheel speeds get further apart, giving the system as a whole more gyroscopic

stiffness. The additional stiffness manifests in an increased oscillatory frequency and

a smaller displacement from the equilibrium state as expected.

In all cases, the vibration-inducing imbalance forces are less significant than the

system’s slow oscillation. The magnitude of the imbalance-induced vibration is evi-

denced by the thickness of the lines seen in Figures 26–28. A closer look at the rotation

of the support structure as shown in Figure 29 reveals that the wheel-synchronous

vibration is small relative to the long-period oscillation. This figure shows the same

data seen in Figure 26.

Adding a flexible appendage (representing a satellite structure such as an an-

tenna or solar array) to the system does not change the response very much. Figure 30

shows the response of the system’s flexible appendage, which has a natural frequency

of 5 Hz. There is some vibration evident at the natural frequency of the appendage,

but the response is dominated by the slow oscillation of the support structure.

The slow, changing oscillation seen in Figures 26–30 accurately reflects the re-

sponse of a system with changing gyroscopic stiffness given an initial whirling type

motion. The initial whirling motion seen in these figures, however, is an artifact of

modeling, caused by the instant application of a disturbing force. Such a motion is

possible and indeed uncontrollable in a two wheel IPACS, but it can only be caused

by an external disturbance force. In an IPACS with full 3-axis control authority, the

control in other dimensions would be used to eliminate the whirling motion.
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Figure 29: A closer look at the support structure vibration from Figure 26. This view
shows the wheel-synchronous vibration

Figure 30: A closer look at the appendage vibration from Figure 26. This view reveals
a small amount of vibration at the appendage’s natural frequency, but
behavior is dominated by long-period oscillation
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4.2 Beat Frequency Analysis

After studying the effect of near-frequency input vibrations, it is evident that

this model does not reveal any beat frequency problems. This is unsurprising given

the linear nature of the model.

The flexible appendage did experience a small resonant vibration when the

difference of two input frequencies matched the natural frequency of the appendage,

but it experienced the same vibration with other unrelated input frequencies.

First, the two-wheel model was run with slightly different wheel speeds: 333 and

338 RPS. The 5 RPS difference in the wheel speeds creates a beat frequency which

matches the natural frequency of the flexible appendage, which was not yet added.

As Figure 31 shows, the 5 Hz beat frequency is clearly evident.

Figure 31: Beat frequency is clearly visible in the support structure when ω1 =
333, ω2 = 338 RPS

Next the model was run at the same wheel speeds with the flexible appendage

added. The appendage represents a flexible satellite body such as a solar panel or

antenna. The rotational state history from this test is shown in Figure 32. The beat

frequency is still clearly visible, and the appendage is experiencing vibration near its

natural frequency.
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x 10

Figure 32: Beat frequency is still visible in the support structure when ω1 = 333, ω2 =
338 RPS, and the appendage experiences excitation at its resonant fre-
quency of 5 Hz

Finally, the same model with flexible appendages was run with a new and wider

wheel speed difference: ω1 = 333, ω2 = 400 RPS. This is shown in Figure 33. The

beat frequency is no longer present, but the appendage still exhibits vibration near its

natural frequency. The vibration magnitude of the appendage in this figure is largely

the same as seen in Figure 32.

x 10

Figure 33: Beat frequency is gone, but appendage still vibrates near its resonant fre-
quency of 5 Hz when ω1 = 333, ω2 = 400 RPS

From studying the results of the tests performed with both frequency offsets,

it appears that there is no more low frequency excitation at the difference frequency

of two inputs than there is at any other combination of inputs. The beat frequency
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exists, but its effects are very limited. Recalling Equation 16, the combined output of

two signals that are close in frequency can be written as

y = 2 sin

(
ω1 +

δ

2

)
t cos

(
δ

2

)
t

The maximum magnitude of the resultant vibrations shown in Figure 31 should

be twice that of the vibrations evident when only one source of vibration is present.

To check this, a test was run with only one wheel spinning. Figure 34 shows that

the vibration magnitude is indeed approximately half of the peak seen when a beat

frequency is present.

Figure 34: Vibration here, caused by one wheel rotating at 333 RPS, is approximately
half the peak vibration seen in Figure 31

A power spectral density plot of the support structure’s vibrations during beat

frequency and non-beat frequency conditions reveals that there is no power at the

low beat frequency. During the beat case, wheel speeds are: ω1 = 333, ω2 = 338 RPS.

For the non-beat case, the speed of wheel 2 is raised to ω2 = 400 RPS. The peak-

normalized PSD of both responses is shown in Figure 35.

The PSD reveals that there is no energy at the low beat frequency, and the

rotation time histories reveal that there is no extraneous excitation as a result of

the beat frequency. Aside from periodically doubling the magnitude of the resultant
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Figure 35: Peak-normalized PSD of support structure θx during beat (ω1 = 333, ω2 =
338 RPS) and non-beat (ω1 = 333, ω2 = 400 RPS) conditions. Low fre-
quency response is nearly identical. Note peaks at the input excitation
frequencies
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high-frequency vibration, there is no negative effect from the beat phenomenon in a

linear system.

4.3 Extra-Synchronous Whirl Excitation

Long rotors have a critical coning frequency, fcon where the wheel speed is

synchronous with the forward whirl speed. This was illustrated with Figure 25 in Sec-

tion 3.6.1. All rotors, however, have forward and backward whirl modes. With multi-

ple flywheels in one system, the flywheels provide each other with extra-synchronous

vibration sources, and it may be possible for these extra-synchronous frequencies

to excite unexpected resonances. Both sub- and super-synchronous excitations were

studied for this phenomenon.

In this section, ω refers to flywheel-specific wheel speed. Forward and backward

whirl speed are respectively referred to as f3 and f4, which were derived and explained

in Section 2.3.5. Spectrograms are used in this section to illustrate the time-varying

nature of the response frequencies. All spectrograms are derived from θx (the rotation

about x) of the wheel in question. Units are very small and are included only for the

purpose of comparison between different cases. The satellite/support spring was used

for all of the tests in this section.

4.3.1 Sub-Synchronous Whirl Excitation. A long-rotor model was used to

look for sub-synchronous whirl excitation. Sub-synchronous resonance is vibration

of a long rotor at speeds lower than the wheel speed. Sub-synchronous resonance

is at a higher frequency than the critical coning frequency, fcon, where the forward

whirl frequency crosses the wheel frequency. The region of interest using the flywheel

parameters chosen for this study is seen in Figure 36, which shows both the forward

and backward whirl of the long rotor used in this study.
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Figure 36: Forward and backward whirl modes of the sub-synchronous study model

In the sub-synchronous test, the wheels will spin at two different speeds. The

vibration input of the slower wheel should excite a forward whirling mode in the faster

wheel, even if the faster wheel is perfectly balanced.

The flywheel parameters used for this study are shown in Table 5. Other param-

eters remain the same as those shown in Table 1 from Section 3.2.3. This model was

studied both with and without bearing damping included. These values were chosen

not for realism, but to give favorable conditions for excited whirl at a frequency other

than the wheel frequency.

Table 5: Flywheel parameters for sub-synchronous study

mass m 10 kg
polar MOI IP 0.1125 kg-m2

transverse MOI IT 0.2015 kg-m2

rotor MOI ratio P 0.5583
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In the sub-synchronous test, wheel 2 was perfectly balanced and operated at

700 RPS. This gives it a forward whirl frequency of f3 ≈ 400 Hz and a backward

whirl frequency of f4 ≈ −11 Hz. Wheel 1 was given a moment-inducing imbalance

and operated at speeds intended to excite f3 of the faster balanced wheel, or about

400 RPS. Wheel 1’s own speed, ω1 caused separate whirling frequencies in wheel 1:

f3 ≈ 242 Hz and f4 ≈ −18 Hz. Natural frequencies can be found by inspection from

Figure 36 and analytically with Equations 12 and 13 from Section 3.2.3. In all cases

the speed of wheel 1 (the unbalanced excitation wheel) varies from 350 RPS at t = 0

to 450 RPS at t = 2.

4.3.1.1 Undamped sub-synchronous response. At first, damping was

neglected to see if there would be any response. Wheel 1’s response is shown in

Figure 37. Note the strength of the self-induced, sub-synchronous, forward whirling

mode. This wheel is well past its critical coning speed for forward whirl, but it is

still responding strongly at the whirling frequency. In fact, at lower wheel speeds the

resonant forward whirling response is stronger than the input disturbance.

400

x,θ y,θ

z,θ

yx

z

700

Figure 37: Spectrogram of wheel 1’s response to its own undamped imbalance. ω1

varies from 350–450 RPS. Note the strong forward whirling resonance
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Wheel 2’s response over the same time period was examined at multiple speeds.

Figure 38 shows the wheel 1 response at a baseline of ω1 = 0 and at ω = ∓700 RPS.

Wheel 2 experienced a significant forward whirling motion when it was rotating in

the same direction as wheel 1. Support response in all cases was similar.

Two spurious vibrations can be found in Figure 38. Most notable is the constant

frequency vibration at approximately 50 Hz which appears in 38(a) and 38(c). The

50 Hz vibration appears to be worse when the excitation is at 400 Hz, but it is actually

worse at approximately 1 sec, and occurs repeatedly if the integration time is longer.

There is also a vibration at approximately 70 Hz visible in 38(a). These vibrations do

not match either of the rotor’s resonant frequencies, and they are system level effects

caused by the bus/support springs and the net gyroscopic stiffness.

Two notable vibrations do appear, however. The first of these vibrations is at

the backward whirl frequency, f4, of wheel 1 (the excitation wheel). This vibration at

approximately 20 Hz is visible in all three scenarios of Figure 38, but is strongest in

the response shown in Figure 38(c), which is the case where the wheels are spinning in

opposite directions. This excitation indicates that wheel 1 is exciting its own backward

whirl mode through interaction with wheel 2, even though wheel 2 is perfectly balanced.

The other vibration apparent in Figure 38 is the vibration that appears near

t = 1 second at approximately 400 Hz in 38(b). This frequency is the forward whirl

speed of wheel 2, and the intended excitation frequency of this test model. This vibra-

tion appears and is most severe about halfway through the test, when the excitation

frequency is 400 Hz. Forward whirl in wheel 2 is expected to be worst at that time

because it is being excited at f3. The persistence of the whirling motion after the

excitation frequency has moved past the resonant frequency shows that whirl tends

to persist after excitation. The same time history appeared when wheel 1’s speed was
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Figure 38: Spectrogram of wheel 2’s response to sub-synchronous vibration input.
ω1 varies from 350–450 RPS. Note the different frequency scale in subfig-
ure (b). Vibration at 50 Hz fades in and out repeatedly
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varied backwards, from 450–350 RPS. In other words, the appearance and decrescendo

of a whirling motion was consistent in time, not in input frequency.

Note that the model configuration represented in 38(b) is not operationally

realistic for a two wheel IPACS, but it demonstrates sub-synchronous excitation. The

problem is that both wheels are spinning in the same direction, which does not allow

for high power storage and transfer with a net zero angular momentum change. In

reality, the wheels will be spinning in opposite directions as they are for the case

shown in Figure 38(c). This situation might occur, however, in a bank of multiple

rotors, such as one being used primarily for energy storage.

4.3.1.2 Damped sub-synchronous response. Since sub-synchronous ex-

citation was found to affect a two flywheel system with no damping, the next step

was to see if it remained when damping was included in the model. The same test

conditions used in the undamped case were used to study a more realistic damped

flywheel configuration.

Figure 39 shows the response of wheel 1, the excitation wheel. Note that the

resonant whirling response has been attenuated below the threshold of visibility in

this spectrogram and all that remains is the synchronous imbalance-induced vibration.

Since the wheel speed is so far from the critical whirling frequency fcon, even the very

small amount of damping present in this model is enough to eliminate this resonance.

Figure 40 shows the damped response of wheel 2 to the same sub-synchronous

imbalance input that induced forward and backward whirl in the undamped case. All

resonances have fallen below the detectable threshold, leaving only the direct input

frequency created by the unbalanced rotation of wheel 1.

From the significant and beneficial effect of even modest damping in this multiple

flywheel IPACS model, it appears that real flywheel systems are safe from the harmful
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Figure 39: Spectrogram of wheel 1’s response to its own damped imbalance. ω1 varies
from 350–450 RPS. The forward whirling resonance is gone

effects of sub-synchronous flywheel vibration in an axially opposed configuration.

Real flywheels necessarily include damping since it is a real and unavoidable physical

phenomenon.

4.3.2 Super-synchronous Whirl Excitation. A short-rotor model with the

nominal parameters given in Table 1 from Section 3.2.3 was used to look for super-

synchronous whirl excitation. Super-synchronous resonance is vibration of a short

rotor at speeds higher than the wheel speed. Ordinarily this is not a problem for short

rotors, since their forward whirling frequencies always remain higher than the wheel

speed. An external vibration input at the resonant speed could induce vibration in

this mode, however. Figure 41 shows the forward and backward whirling frequencies,

f3 and f4, for this configuration.

This test used the same setup as the test for sub-synchronous whirl, with dif-

ferent rotors and a different excitation speed. In this test wheel 1 was spun from

950–1050 RPS in an attempt to excite vibration modes in wheel 2, which was spin-

ning at ∓700 RPS. A non-spinning wheel was again used as a baseline. Whirl modes
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Figure 40: Wheel 2 damped sub-synchronous spectrograms. ω1 varies in time from
350–450 RPS. Frequencies other than the input have been attenuated
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Figure 41: Forward and backward whirl modes of the super-synchronous study model.
One dotted line is zero and the other is synchronous with the wheel speed.

for wheel 2 are f3 ≈ 890 Hz and f4 ≈ −12 Hz. For wheel 1, f4 ≈ −7.9 Hz. f3 for

wheel 1 is well above any vibrations present in the system, since the rotors are short.

Damping was again at first neglected to see if there would be a response. The

super-synchronous excitation response was very similar to the sub-synchronous excita-

tion response. Spectrograms in this section show a wheel 1 speed range from 850 RPS

at t = 0 to 950 RPS at t = 2.

Spectrograms of the wheel 1 and support responses did not reveal any reso-

nances. The only place in the model with any visible extra-synchronous frequency

response was wheel 2. The spectrograms for wheel 2 are shown in Figure 42. Simi-

lar to the sub-synchronous case, there is a slight forward whirl response when spin

directions are identical, and there is a slight backward whirl excitation regardless of

relative spin directions.
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Figure 42: Spectrograms of wheel 2’s undamped response to super-synchronous vi-
bration input. ω1 varies in time from 850–950 RPS
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Figure 42 also reveals a slight response around the backward whirl modes. There

is not enough spectral resolution in the figures to determine which wheel’s response

is causing the vibration. They are very close in frequency, however (approximately 8

and 12 Hz), and perhaps both of them are responding.

As seen in Figure 43, resonant vibrations due to a super-synchronous vibration

excitation disappear when damping is included in the model, similar to the disap-

pearance of resonant vibration in the sub-synchronous test.

4.4 Summary

The model developed in this thesis was used to investigate potential causes of

troublesome low frequency vibration in an IPACS. Beat frequency was found to have

absolutely no impact on low frequency vibrations, and minimal impact at any fre-

quency, with the only impact being the periodic doubling of the input forces. Extra-

synchronous resonance excitation, both sub- and super-synchronous, was found to

have only a small impact on satellite vibrations. Backward whirl was excited regard-

less of spin directions, but extra-synchronous forward whirl was only excited when

spin directions were identical. Extra-synchronous vibration is very small relative to

the inducing imbalance, but it is at a lower frequency. The identical spin direction

configuration is of no concern for a simple IPACS, but could be a factor in a bank

of flywheels intended primarily for energy storage. With a small amount of damping,

however, all extra-synchronous vibration effects disappear.
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Figure 43: Spectrograms of wheel 2’s damped response to super-synchronous vibration
input. ω1 varies in time from 850–950 RPS
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V. Conclusion

5.1 Summary

In this thesis a flexible linear dynamics model was developed to study vibra-

tions in a system of multiple connected gyroscopic flywheels. The model was validated

through several types of test input, and then used to analyze various sources of vibra-

tion interaction between two flywheels a simulated IPACS. System parameters were

intended to be representative of a near-future technology demonstration mission to

validate the use of flywheels for energy storage and attitude control in space.

The source of vibration studied in this model was an assumed eccentricity caused

by manufacturing defect. Furthermore, it was assumed that this defect was attenuated

by active magnetic bearing control methods described in previous literature. The

residual vibrations after attenuation were used as model inputs. The vibration inputs

were applied in the radial and transverse directions to an axially-aligned two-flywheel

IPACS.

The model was then used to study interactions between multiple sources of

vibration in an IPACS. Specifically, the beat frequency and extra-synchronous vibra-

tion excitation phenomena were studied, including both sub- and super-synchronous

vibration excitation scenarios.

5.2 Findings

The beat frequency problem was shown to have almost no impact in a linear

system. The extra-synchronous vibration effects were both found to have a small effect

on a double flywheel system. When mild damping was applied, effects were below the

threshold of observability, but with no damping there was a small but consistent

system response to backward whirl modes. In addition, if there are multiple flywheels
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with the same spin direction, extra-synchronous forward whirl in one wheel can be

excited by another unbalanced wheel.

Of the vibration sources considered in this thesis, extra-synchronous resonance

excitation, both sub- and super-synchronous, proved to be of some potential concern

in the future development of IPACS. As bearing and flywheel system technology con-

tinues to improve, damping will continue to fall as flywheel designers seek to remove

sources of loss from their systems. At some point the damping may be small enough

to allow the extra-synchronous resonances to affect the system negatively. Vibrations

caused by input interactions are much smaller than the vibrations themselves, but

they are also at a lower frequency.

Park proposed a notch filter centered at the wheel speed to mitigate the effects of

wheel imbalance to an IPACS or satellite. If bearing development produces magnetic

bearings with low enough damping to allow the extra-synchronous resonant vibration

to become a problem, the control system designer could also develop methods for

mitigating extra-synchronous vibration modes.

5.3 Contributions

This thesis proved the existence of inter-flywheel vibration interactions in a

multiple flywheel system. Extra-synchronous resonance excitation between multiple

rotors was found to exist in an ideal undamped configuration, but even a very small

realistic amount of damping was enough to mitigate the effect to the point that it

was less of a concern than individual rotor vibration inputs.

5.4 Recommendations for Future Work

This thesis showed that damping can mitigate and possibly eliminate unde-

sirable extra-synchronous flywheel vibration. Future research should be done to de-
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termine how low the bearing damping can be before the sub-synchronous resonance

negatively affects system operation.

In addition, the model developed in this thesis was used to investigate some of

the effects of multiple flywheel vibrations in an IPACS, but this thesis was limited

in scope to analyzing two co-axial rotors with simple imbalance-induced vibrations

in and about 2 axes. In an advanced flywheel there is also significant potential for

rotational vibration about the spin axis due to torque ripple. In the co-axial case the

torsional vibrations will remain independent from other system disturbances, but in

a flywheel system with multiple non-co-axial rotors, torsional vibrations will induce

other vibrations that may be deleterious to successful IPACS implementation on a

satellite.

The analysis of those extra factors should be undertaken as a further step along

the path to developing flywheel energy storage systems. With torsional stiffness turned

on and the appropriate input forces applied, the model developed in this thesis is

capable of performing this evaluation.

Furthermore, as flywheel performance continues to improve and bearing de-

velopment produces magnetic bearings with lower losses, the vibration interaction

effects uncovered in this thesis may become significant. If that occurs, flywheel bear-

ing controllers must be able to account for and mitigate the effects of backward whirl

excitation between flywheels.

5.5 Conclusion

Flywheels may someday be a key component for providing the satellite designer

with flexibility and performance benefits. Their successful on-orbit deployment has

to this point been delayed longer than any of the original proponents of the idea

could have envisioned, and many problems in this area remain unstudied. Someday,
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however, enough problems will be solved to make flywheels in orbit a viable reality.

The engineering community must continue to work diligently in this area until that

day arrives.
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Appendix A. One Integration Problem and a Solution

Position is the double integration of acceleration, which is proportional to the input

force as shown in Equation 29.

x(t) =

∫
v(t) =

∫∫
a(t) =

∫∫
f(t)

m
(29)

Given sinusoidal inputs acting on a 1 kg mass:

f(t) = sin t cos t

a(t) = sin t cos t

v(t) = − cos t+ c1 sin t+ c1

x(t) = − sin t+ c1t+ c2 − cos t+ c1t+ c2

If the mass is initially at rest (x0 = v0 = a0 = 0), the constants are found to be:

f(t) = sin t cos t

c1 = 1 0

c2 = 0 1

When a sine wave force is applied to an unconstrained mass initially at rest,

c1 will cause a positive secular drift. This drift does not occur if the input force is

a cosine wave. The difference between sine and cosine input forces is illustrated in

Figure 44.

The drift illustrated in Figure 44 is a phenomenon observed only in modeling;

it does not occur in real systems. Most models do not reveal the drift because they

model systems constrained by some spring force. For unconstrained systems, a model

can reveal a drift, but it does not exist in reality because the periodic rotating forces
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Figure 44: Acceleration, velocity, and position due to sinusoidal inputs applied to a
free body initially at rest

such as wheel imbalances always grow from an initial magnitude of zero. It is only a

factor when modeling a system that is rotating at t = 0.

Because the rotating force must be represented as a sine wave in one dimension,

the direct application of this force will cause a secular drift. One solution is to delay

the application of this force until the input force has rotated 90◦. This delay will cause

the sine wave to look like a cosine wave (it will begin from 1 rather than from 0),

and it will be shifted correctly in phase. With multiple input forces, each one must

be “turned on” at the appropriate moment. Given the numerical nature of the model

in this thesis, the limits of integration must match these times as well to ensure that

the sine input is applied at exactly the right moment. “Turning on” the forces at the

correct times will eliminate this source of drift.
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Appendix B. Matlab® Code

Listing B.1: ../models/model.m
1 function [output] = model (config)

2 global ss model input output c ii model

3 % Feb 2011

4 % Jordan Firth

5

6 % state = [x y z a b g x’ y’ z’ a’ b’ g’]’

7

8 %% constants

9 % compute/import data from case_maker

10 [model ,input] = case_reader(config );

11

12 %% R Matrices

13 % r3- each page of array is rot mat for one wheel

14 % r12 - blkdiag of 4 r*3’s- rotate all 4 states of the wheel at once

15

16 % R- one giant rotation matrix for the whole massive A matrix -may not need

17

18 % Here are the rz ’s

19 r3 = zeros(3,3,model.nwheels ); % preallocate for speed

20 r12 = zeros (12,12, model.nwheels ); % preallocate for speed

21 R = zeros(model.nwheels *12); % preallocate for speed

22 for i = 1: model.nwheels

23 r3(:,:,i) = Rmaker1(model.zps(:,i)); % r3 is ind. rot. matrix

24 %blkdiagn creates super -duper 4x rot. matrix (x..a..dx..da..)

25 r12(:,:,i) = blkdiagn(r3(:,:,i),4); % stores all r12 ’s in array

26 R(12*i -11:12*i, 12*i -11:12*i) = r12(:,:,i); % giant rotation matrix

27 end

28

29 %% mi’s- mass matrix inverses

30

31 % compute M inverses once and store for speed

32 mbusi6 = model.msupport ^-1;

33

34 mi6 = model.mwheel ^-1;

35 mi12 = blkdiag(eye(6), mi6);

36

37 % mi for dummy mass

38 if model.dummy

39 mdummyi6 = model.mdummy ^-1;

40 end

41

42 %% A Matrix

43 % Create a-matrices and assemble into A

44

45 ss.A_rb = blkdiagn ([zeros (6) eye (6); zeros (6,12)], model.nwheels );

46

47 % % these are useful sometimes when the model breaks

48 % size(rz12 (:,:,1))

49 % size(blkdiag(Mbusi6 ,Mi6))

50 % size(k)

51

52 % K and C terms

53 for i = 2: model.nwheels

54

55 % K

56 K = r12(:,:,i) * blkdiag(mbusi6 ,mi6) * model.k * r12(:,:,i)’;

57 ss.A_rb (7:12 ,1:6) = ss.A_rb (7:12 ,1:6) + K(1:6 ,1:6);

58 ss.A_rb (7:12 ,12*i -11:12*i-6) = ss.A_rb (7:12 ,12*i -11:12*i-6) + K(1:6 ,7:12);

59 ss.A_rb (12*i -5:12*i ,1:6) = ss.A_rb (12*i -5:12*i,1:6) + K(7:12 ,1:6);

60 ss.A_rb (12*i -5:12*i,12*i -11:12*i-6) = ss.A_rb (12*i -5:12*i,12*i -11:12*i-6) + ...

61 K(7:12 ,7:12);

62

63 % C
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64 C = r12(:,:,i) * blkdiag(mbusi6 ,mi6) * model.c * r12(:,:,i)’;

65 ss.A_rb (7:12 ,7:12) = ss.A_rb (7:12 ,7:12) + C(1:6 ,1:6);

66 ss.A_rb (7:12 ,12*i -5:12*i) = ss.A_rb (7:12 ,12*i -5:12*i) + C(1:6 ,7:12);

67 ss.A_rb (12*i -5:12*i ,7:12) = ss.A_rb (12*i -5:12*i ,7:12) + C(7:12 ,1:6);

68 ss.A_rb (12*i -5:12*i,12*i -5:12*i) = ss.A_rb (12*i -5:12*i,12*i -5:12*i) + ...

69 C(7:12 ,7:12);

70 end

71

72 ss.A_rb (7:12 ,1:6) = ss.A_rb (7:12 ,1:6) + mbusi6 * model.busk;

73

74 % here is my dummy mass for vibe

75 if model.dummy

76 x=model.nwheels *12+1;

77 a = [zeros (6) eye(6) ; mdummyi6*model.kdummy (7:12 ,7:12) zeros (6)];

78 ss.A_rb = blkdiag(ss.A_rb ,a);

79

80 ss.A_rb (7:12 ,1:6) = ss.A_rb (7:12 ,1:6) + mbusi6*model.kdummy (1:6 ,1:6);

81 ss.A_rb (7:12,x:x+5) = ss.A_rb (7:12 ,x:x+5) + mbusi6*model.kdummy (1:6 ,7:12);

82 ss.A_rb(x+6:x+11 ,1:6) =ss.A_rb(x+6:x+11 ,1:6) + mdummyi6*model.kdummy (7:12 ,1:6);

83 clear a

84

85 input.q0 = [input.q0; zeros (12 ,1)];

86 end

87

88 %% B Matrix

89

90 ss.B = zeros (12* model.nwheels ,model.nwheels ); % preallocate for speed

91 clear a

92 for ii = 2:model.nwheels;

93 a = zeros (12 ,2);

94 a([7 10] ,1) = input.b([7 10],ii);

95 a([8 11] ,2) = input.b([8 11],ii);

96

97 ss.B(12*ii -11:12*ii ,2*ii -1:2*ii) = r12(:,:,ii) * mi12 * a;

98 end

99 clear a

100

101 % input.b1 creates constant direction input forces (just for testing)

102 input.b1 = mi12*input.b1;

103 input.b1 = input.b1(:);

104 ss.B = [ss.B input.b1];

105

106 %% W matrices

107 % these will actually be created in the solver , but I do as much work here

108 % as possible to save integration time

109

110 % W

111 % stretch vector: mathworks.com/matlabcentral/newsreader/view_thread /129069

112

113 input.w_(1,:) = input.w(1 ,:);

114 input.w_(2,:) = (input.w(2,:)-input.w(1 ,:))/( input.time);

115

116 a = repmat(input.w_(1,:),12,1);

117 b = repmat(input.w_(2,:),12,1);

118

119 % input.w_ = input.w_ ’;

120

121 input.W(:,:,1) = diag(a(:));

122 input.W(:,:,2) = diag(b(:));

123 clear a b

124

125 %% G matrices

126 % these will actually be created in the solver , but I do as much work here

127 % as possible to save integration time

128 Ip = model.mwheel (6,6);

129 ss.G = zeros (12* model.nwheels );
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130 for i = 2: model.nwheels

131 j = 12*i;

132 ss.G(j-2:j,j-2:j) = Ip * r3(:,:,i) * mi6 (4:6 ,4:6) * ...

133 [[0 -1 0];[1 0 0];[0 0 0]] * r3(:,:,i)’;

134 end

135

136 %% find integration times

137 % Each wheel must be integrated to and from the time when it crosses

138 % theta = pi/2. Here I find those times and create a time vector which

139 % contains the appropriate integration limits.

140

141 clear a b

142 a = [input.w_(2 ,:)/2; input.w_(1,:); -pi/2* ones(1,model.nwheels )]’;

143 b=[];

144 for ii = 1:model.nwheels

145 b = [b roots(a(ii ,:)) ’]; % only need the max time

146 end

147

148 % remove solutions outside of my time window (0-tf)

149 b=b(b>0);

150 b=b(b<input.time);

151

152 t = unique ([0 b input.time ]); % [0, intermediate times , tf]

153

154 clear a b

155

156 %% fix matrices for dummy mass

157 if model.dummy

158 ss.B = [ss.B; zeros(12,size(ss.B ,2))];

159 ss.G = blkdiag(ss.G,zeros (12));

160 x = model.nwheels *12;

161 input.W = cat(2,input.W,zeros(x,12 ,2));

162 input.W = cat(1,input.W,zeros(12,x+12 ,2));

163 clear x

164 end

165

166 %% solve equation

167 % run with state_space_model (no need to run the entire model 10000 times)

168

169 options = model.options;

170 output.t = [];

171 output.q = [];

172 for ii = 1: length(t) - 1

173 time = [t(ii) t(ii+1)-1E -80];

174 [output_t ,output_q] = ode45(@state_space_model ,time ,input.q0,options ,input ,ss);

175 output.t = [output.t; output_t ];

176 output.q = [output.q; output_q ];

177

178 input.q0 = output.q(size(output.q,1) ,:);

179 end;

180

181 end

182

183 function dq = state_space_model(t,q,input ,ss )

184 % global A q B u

185 % global peanut teakettle

186 % W(t) varies from w0 to wf - used to get correct gyro stiffness in A

187 W = input.W(:,:,1) + input.W(:,:,2) * t;

188

189

190 % vibe input has to look like a cosine (start from 1). If it looks like a

191 % sine , the position drifts. Since the circular force of the imbalance

192 % needs both sines and cosines , I have to include sines , but I accomplish

193 % it by not starting them until theta = pi/2

194

195 % this is where i determine theta
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196 theta = (input.w_(1,:)*t + input.w_(2 ,:)/2*t^2);

197

198 % here is wheel speed at t=time

199 w = (input.w_(1,:) + input.w_(2,:)*t);

200 % peanut = [peanut w(2)]; see w while testing

201 % teakettle = [teakettle t]; see t while testing - to match up with w

202

203 % this is the magnitude of the centripetal force input

204 u_mag = input.e * w.^2;

205

206 % and here I test and only include the sine if theta >=pi/2

207 % sin/cos(theta) is direction; u_mag is magnitude

208 u = [cos(theta ).* u_mag; sin(theta ).* u_mag .*(abs(theta)>=pi/2)];

209

210 u = [u(:); 1];

211

212 B = ss.B;

213

214 A = ss.A_rb + W*ss.G;

215

216 dq = A*q + B*u;

217 end

Listing B.2: ../models/case reader.m
1 function varargout = case_reader(file_num)

2 % clc;

3 % [model ,input] = case_reader(file_num)

4 % show = case_reader(file_num)

5 %

6 % when called with 2 output arguments , returns model and input , which are

7 % structures that contain everything model.m needs

8 % when called with 1 output argument , returns show (wheels and axes)

9

10 % check for correct number of arguments (1 or 2)

11 if nargout ~=1 && nargout ~=2; error(’something is horribly wrong’); end;

12

13 filename = [’cases/’ num2str(file_num) ’.txt’];

14

15 check = struct(’wheels ’,0,’axes’ ,0);

16 local.L = 0;

17

18 %% reads file only to find show - which wheels and axes to display

19 % show contains show.wheels and show.axes

20 if nargout == 1

21 fid = fopen(filename );

22 while ~feof(fid)

23 key = textscan(fid ,’%s’,1,’delimiter ’,’ ’);

24 value = textscan(fid ,’%s’,1,’delimiter ’,’\n’);

25 % char(key{1,1}) % for testing

26 switch char(key{1,1})

27 case ’wheels:’

28 if check.wheels; disp(’wheels multiply defined ’); end

29 show.wheels = str2num(cell2mat(value {:}));

30 check.wheels = 1;

31 case ’axes:’

32 if check.axes; disp(’axes multiply defined ’); end

33 show.axes = str2num(cell2mat(value {:}));

34 check.axes = 1;

35 otherwise

36 % do nothing

37 end

38 end

39 fclose(fid);

40 varargout (1) = {show};

41 return
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42 end

43

44 %% nargout must be 2-> read file for model configuration

45 %% set up geometry of wheels (#, orientation)

46 % orientation of spin axis (wheel z) in global coords

47 model.zps = [[0 0 1]’ [0 0 1]’ [0 0 -1]’];

48

49 % # wheels derived from zps

50 model.nwheels = size(model.zps ,2);

51 %% set variables to defaults

52 model.busk = zeros (6); % no bus/support spring

53 model.dummy = 0; % no dummy mass (appendage)

54 % define dummy mass terms anyways , we ’ll just ignore them if dummy=0

55 model.mdummy = diag ([1 1 1 10 10 1]);

56 kdummy = 1000*pi^2* diag ([0 0 0 1 1 0]);%*1.23456;

57 model.kdummy = [-kdummy kdummy; kdummy -kdummy ];

58

59 input.w = zeros(2,model.nwheels ); % w = 0 for all wheels

60

61 % default is no initial input or state

62 qbuilder = zeros (12,( model.nwheels+model.dummy ));

63 input.b = qbuilder;

64 input.b1 = qbuilder;

65

66 % default integration time

67 input.time = 1;

68

69 % empty ode45 options

70 model.options = [];

71

72 %% read the case file and set up the model

73 fid = fopen(filename );

74 while ~feof(fid)

75 key = textscan(fid ,’%s’,1,’delimiter ’,’ \n’);

76 % char(key {:})

77 value = textscan(fid ,’%s’,1,’delimiter ’,’\n’);

78 value = cell2mat(value {: ,:});

79 switch char(key{1,1})

80 case ’config:’ % complete

81 % value {1,1} for testing

82 % config = value;

83 switch value

84 case ’validation ’

85 [k,c,mwheel ,msupport ,L] = validation_model;

86 case ’super’

87 [k,c,mwheel ,msupport ,L] = super_model;

88 case ’thesis ’

89 [k,c,mwheel ,msupport ,L] = super_model;

90 case ’sub’

91 [k,c,mwheel ,msupport ,L] = sub_model;

92 otherwise; error(’uh-oh’)

93 end

94 model.k=k; model.c=c; model.mwheel=mwheel; ...

95 model.msupport=msupport;

96 % local =setfield(local ,’L’,L);

97 local.L = L;

98 local.config = value;

99 case ’busk’ % complete

100 model.busk = -1e6*diag([0 0 0 1 1 0]);

101 case ’appendage ’ % complete

102 model.dummy = 1;

103 case ’time:’ % complete

104 input.time = str2num(value);

105 case ’whz:’ % complete

106 input.w = ones (2,3) .* str2num(value) * 2*pi;

107 case ’wrpm:’ % complete
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108 input.w = str2num(value) * 2*pi /60;

109 case ’damping:’ % complete

110 % if str2num(cell2mat(value {:}))==0

111 % str2num(value)

112 if str2num(value )==0

113 local.c = 0;

114 disp(’damping is off’)

115 else disp(’i do not understand ’)

116 end

117 case ’input:’ % complete

118 % this takes care of ’input.b’ and ’input.b1’

119 eval([’input.’ value ’;’]);

120 case ’state:’ % complete

121 eval(value);

122 case ’options:’ % complete

123 eval([’model.options.’ value ’;’]);

124

125 otherwise % return an error if something unexpected happens

126 test = char(key {1 ,1});

127 if isempty(test)

128 elseif strfind(’wheels: axes: %’,test)

129 else

130 char(key{1,1})

131 error(’typo in input file’);

132 end

133 end

134 end

135 fclose(fid);

136 try; cexist=local.c; end

137 % a = local.c

138 % c=c

139 % b = model.c

140 % adjust damping (usually to turn it off)

141 if exist(’cexist ’,’var’); model.c = model.c * local.c; end

142

143 % build q0

144 input.q0 = qbuilder (:);

145

146 fxy = 1; % this is unneccessary - all scaling is in e, so this is just 1

147 fab = fxy * local.L / 4;

148

149 local.config

150 if strfind(’thesis super sub ’,local.config)

151 input.b(10:11 ,:) = input.b(10:11 ,:)* fab;

152 input.e = 1e-11 * model.mwheel (1 ,1); %

153 elseif strfind(’validation ’,local.config)

154 input.e = 1;

155 end

156

157 varargout (1) = {model};

158 varargout (2) = {input};

159

160 return

161

162 % imbalance scaling terms - may be used to create e later

163 % F_centripetal = mrw^2; e = mr; m = m_wheel; e = eccentricity

164 % this imbalance causes x/y vibe

165

166 % this imbalance causes a/B vibe

167 % the model can ’t tell the difference , only scaling is in input.b

168 % from page 93 of notes

169 %

170

171 % a/B imbalance input should just be 1, and i will here multiply it by

172 % fab

173 end
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174

175 %% functions to set up common wheel properties for the 3 model types

176 function [k,c,mwheel ,msupport ,L] = validation_model

177 [k,msupport ,L] = validation_model_params;

178 c = k/1000;

179 mwheel = validation_mass;

180 end

181 function [k,c,mwheel ,msupport ,L] = super_model

182 [k,msupport ,L] = thesis_model_params;

183 c = k/500;

184 mwheel = super_mass;

185 end

186 function [k,c,mwheel ,msupport ,L] = sub_model

187 [k,msupport ,L] = thesis_model_params;

188 c = k/500;

189 mwheel = sub_mass;

190 end

191 %% functions to create stiffness matrices

192 function [k,msupport ,L] = validation_model_params

193 % distance from CG_support to CG_flywheel

194 d = 1;

195 L = 0.5;

196

197 k_mag = 2500; % (stiffness of each mag bearing)

198 kt = 2*k_mag; % linear transverse stiffness

199 kz = 0; % linear axial stiffness

200 Kt = k_mag*L^2/2; % angular - derived from k_mag

201 Kg = 0; % about flywheel rotation axis - zero

202 k_vector = [kt, kt, kz , Kt , Kt, Kg]’ ;

203

204 k1 = -diag(k_vector)-diag ([0 0 0 d^2*kt d^2*kt 0]); % upper left

205 a = [0 -d*kt; d*kt 0];

206 k1(1:2 ,4:5) = a;

207 k1(4:5 ,1:2) = a’;

208 k2 = diag(k_vector );

209 k2(4:5 ,1:2) = a;

210 k3 = k2 ’; % lower left

211 k4 = -diag(k_vector ); % lower right

212

213 k = [k1 k2; k3 k4];

214

215 % mass properties of support structure

216 mbus = 10;

217 I1 = 10;

218 I2 = 10;

219 I3 = 10;

220 msupport = diag([mbus ,mbus ,mbus ,I1 ,I2,I3]);

221 end

222 function [k,msupport ,L] = thesis_model_params

223 % distance from CG_support to CG_flywheel

224 d = .2;

225 L = .2;

226

227 % magnetic bearing stiffness

228 k_mag = 1756e3; % N/m (transverse stiffness of each mag bearing)

229 kz = 0; % linear axial stiffness - not modelled here

230 Kg = 0; % about flywheel rotation axis - zero

231

232 % model stiffnesses - derived from mag bearing stiffness

233 kt = 2*k_mag; % N/m (effective model stiffness - 2 bearings/flywheel)

234 Kt = k_mag*L^2/2; % N-m/rad (model angular stiffness - from k_mag)

235

236 % stiffness vector

237 k_vector = [kt, kt, kz , Kt , Kt, Kg]’ ;

238

239 % turn my bearing stiffnesses into a stiffness matrix
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240 k1 = -diag(k_vector)-diag ([0 0 0 d^2*kt d^2*kt 0]); % upper left

241 a = [0 -d*kt; d*kt 0];

242 k1(1:2 ,4:5) = a;

243 k1(4:5 ,1:2) = a’;

244 k2 = diag(k_vector );

245 k2(4:5 ,1:2) = a;

246 k3 = k2 ’; % lower left

247 k4 = -diag(k_vector ); % lower right

248

249 k = [k1 k2; k3 k4];

250

251 % mass properties of support structure

252 mbus = 10; % kg

253 I1 = 10; % kg-m^2 (MOI about X)

254 I2 = 10; % (MOI about Y)

255 I3 = 10; % (MOI about Z)

256

257 msupport = diag([mbus ,mbus ,mbus ,I1 ,I2,I3]);

258 end

259 %% functions to create mass matrices

260 function mwheel = validation_mass

261 m = 10;

262 L = 0.5;

263 r = 1/8;

264 It = m/12 * (3*r^2 + L^2);

265 Ip = m/2 * r^2;

266

267 mwheel = diag([m,m,m,It ,It,Ip]);

268 end

269 function mwheel = super_mass

270 m = 10; % kg (mass of flywheel)

271 L = .2; % m (length of flywheel)

272 r = .15; % m (radius of flywheel)

273 It = m/12 * (3*r^2 + L^2); % kg-m^2 (transverse MOI)

274 Ip = m/2 * r^2; % (polar MOI)

275

276 % this is the number that is defined above

277 % It = 0.0896;

278

279 mwheel = diag([m,m,m,It ,It,Ip]);

280 end

281 function mwheel = sub_mass

282 m = 10; % kg (mass of flywheel)

283 L = .2; % m (length of flywheel)

284 r = .15; % m (radius of flywheel)

285 It = m/12 * (3*r^2 + L^2); % kg-m^2 (transverse MOI)

286 Ip = m/2 * r^2; % (polar MOI)

287

288 % for demonstration of sub -sync whirl , redefine It - cases 72xx

289 It = 0.2015;

290

291 mwheel = diag([m,m,m,It ,It,Ip]);

292 end

293

294

295

296

297 % model.options.MaxStep = 2e-4;

Listing B.3: ../models/crunch.m
1 function crunch(config ,varargin)

2 global output

3

4 if nargin == 0; config = ’validate ’; end;

5
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6 if ~isnumeric(config)

7 fid = fopen(’case_maker.m’);

8 cases ={};

9 while ~feof(fid)

10 garbage = textscan(fid ,’%s’,1,’delimiter ’,’\n’);

11 cases = [cases; textscan(fid ,’case %u’ ,1)];

12 end

13 fclose(fid);

14 cases = cell2mat(cases );

15 % config = unique(b)’;

16 switch config

17 case ’validate ’

18 config = cases(find(cases <1000));

19 case ’test’

20 config = cases(find(cases >=1000));

21 case ’all’

22 config = cases;

23 end

24

25 end

26

27 % return % for testing

28

29 % if length(config )>1; matlabpool open local; end;

30

31 % This code creates data for me if create_data by calling the model funct

32

33 parfor jj=1: length(config)

34 ii = config(jj)

35 [output] = model(ii);

36 filename = strcat(’data/’, num2str(ii),’.mat’);

37 iSave(filename ,output );

38 end

39

40 % if length(config )>1; matlabpool close; end;

41

42 fprintf(’crunched !!!\r’)

43

44

45 function iSave(filename ,output)

46 filename

47 save(filename ,’output ’)

Listing B.4: ../models/graph.m
1 function h = graph(config ,show_plots ,varargin)

2 h=[]; global output;

3

4 if nargin == 0; config=’validate ’; show_plots =0; end;

5

6 %% determine which cases to graph

7 if isnumeric(config)

8 % if I only request 1 (or a few) plots - display them on screen

9 if nargin ==1|| isempty(show_plots ); show_plots = 1; end

10 else % read case_maker to see which plots to graph

11 fid = fopen(’case_maker.m’);

12 cases ={};

13 while ~feof(fid)

14 garbage = textscan(fid ,’%s’,1,’delimiter ’,’\n’);

15 cases = [cases; textscan(fid ,’case %u’ ,1)];

16 end

17 fclose(fid);

18 cases = cell2mat(cases );

19 % config = unique(b)’;

20 switch config

21 case ’validate ’ % graph only my validation cases
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22 config = cases(find(cases <1000));

23 case ’test’ % graph only my test cases

24 config = cases(find(cases >=1000));

25 case ’all’ % graph all cases found in case_maker

26 config = cases;

27 end

28 end

29

30 save_plots = 1;

31

32 %% crunch if necessary

33 crunch_this = [];

34 for ii = config

35 filename = [’data/’, num2str(ii), ’.mat’];

36 if ~exist(filename );

37 crunch_this = [crunch_this ii];

38 end;

39 end

40

41 if ~isempty(crunch_this ); crunch(crunch_this ); end

42

43 %% create graphs

44 for ii = config

45 % load show.wheels and show.axes

46 show = case_reader(ii);

47

48 filename = [’data/’, num2str(ii), ’.mat’];

49 load(filename)

50

51 % Create graphs

52

53 ncols = length(show.wheels );

54 naxes = length(show.axes);

55

56 label = {’$x ~\ textrm {(m)}$’,’$y ~\ textrm {(m)}$’,’$z ~\ textrm {(m)}$’ ,...

57 ’$\theta_x ~\ textrm {(rad)}$’,’$\theta_y ~\ textrm {(rad)}$’ ,...

58 ’$\theta_z ~\ textrm {(rad)}$’ ,...

59 ’$\dot{x } ~\ textrm {(m/s)}$’,’$\dot{y } ~\ textrm {(m/s)}$’ ,...

60 ’$\dot{z } ~\ textrm {(m/s)}$’ ,...

61 ’$\dot{\ theta_x } ~\ textrm {(rad/s)}$’ ,...

62 ’$\dot{\ theta_y } ~\ textrm {(rad/s)}$’ ,...

63 ’$\dot{\ theta_z }~\ textrm {(rad/s)}$’};

64

65 figure(ii);

66 set(gcf ,’units’,’inches ’, ’position ’ ,[0 0 2.4* ncols 1.4* naxes ],...

67 ’paperpositionmode ’ ,...

68 ’auto’,’papersize ’ ,[2.4*ncols -.5 1.4* naxes ]);

69 % this is pretty obfuscated to me- need some comments

70 for c = 1:ncols % this cycles and creates naxes plots for each wheel

71 wheel = show.wheels(c);

72

73 for k = 1:naxes % this loop actually creates each plot

74 axis = show.axes(k);

75 h(k,c) = subplot(naxes ,ncols ,ncols *(k-1)+c);

76 plot(output.t,output.q(:,axis +12*( wheel -1)));

77 tf = output.t(length(output.t));

78 set(gca ,’xlim’ ,[0 tf]);

79 if c==1; ylabel(label{axis},’interpreter ’,’latex’); end;

80 if k==naxes; xlabel(’time (s)’); end;

81

82 % put correct wheel # label on only top subplot

83 if k==1;

84 % code ’s wheel #’s = reality + 1; (1 is bus)

85 if wheel == 4

86 title(’Appendage ’);

87 elseif wheel ~=1;
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88 title([’wheel ’,num2str(wheel )-1]);

89 else; title(’Support ’);

90 end

91 end

92

93 end

94

95 end

96

97 % save and/or show plots

98 % create files of each plot

99 if save_plots;

100 % MATLAB fig file

101 saveas(gcf ,[ fullpath(’.\pics\figs’),’\case’, ...

102 num2str(ii)],’fig’);

103 % pdf file for inclusion in thesis

104 saveas(gcf ,[ fullpath(’./pics/pdfs’),’/case’, ...

105 num2str(ii)],’pdf’);

106 % png file for quick viewing of all cases - this one has case label

107 % suplabel([’Case ’, num2str(ii)],’t’);

108 saveas(gcf ,[ fullpath(’./pics/pngs’),’/case’, ...

109 num2str(ii)],’png’);

110 end;

111 % show_plots

112 if ~show_plots; close; end;

113

114 end

115

116 fprintf(’graphed !!!\r’)

Listing B.5: ../models/spect me.m
1 function spect_me(config ,fmax ,wheel ,varargin)

2 % this will make spectrograms

3 global S F T P

4

5 if nargin < 3 ; wheel = 3; end

6

7 % done = [7210:7212 7222 ];%7310:7312]7221;

8 % if intersect(config ,done);

9 % error(’already completed ’)

10 % end

11

12 %% create graphs

13 for jj = 1: length(config)

14 ii = config(jj);

15

16 filename = [’data/’, num2str(ii), ’.mat’];

17 load(filename)

18

19 %%

20 % wheel = 1; % for testing

21 % ii = 1; % for testing

22 % fmax = 450; % for testing

23 qnum = 12*( wheel -1)+4;

24

25 x=output.q(:,qnum); % alpha of specified wheel (default 2)

26

27 samples = length(output.t);

28 time = output.t(samples );

29 Fs = samples/time;

30

31 segments = 30;

32 poverlap = .95;

33 window = floor(samples/segments );

34 % nfft = max(2^ nextpow2(window ) ,2^12);
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35 nfft = 2^15;

36 noverlap = floor(window * poverlap) ;

37

38 % figure (1) % for testing

39 figure(ii +10000); clf;

40 set(gcf ,’units’,’inches ’, ’position ’ ,[0 0 8 4] ,...

41 ’paperpositionmode ’ ,...

42 ’auto’,’papersize ’ ,[8 4]);

43 % S=spectrogram(x,window ,noverlap ,nfft ,fs)

44 [S,F,T,P]= spectrogram(x,window ,noverlap ,nfft ,Fs);

45

46 if nargin == 1;

47 fmax = 1000;

48 end;

49

50 Fmax = floor(fmax * 1000/F(1000));

51

52 % colorbar is messed up for signals <1e-20: so I multiply by 1e10

53 pcolor(T,F(1: Fmax),1e10*P(1:Fmax ,:))

54 % pcolor(T,F(1: Fmax),P(1:Fmax ,:))

55 shading flat

56 colorbar

57 xlabel ’Time (s)’

58 ylabel ’Frequency (Hz)’

59

60 warning(’Remember to manually edit the colorbar scale (it"s 1e10 too high)’)

61

62 %%

63

64 % save and/or show plots

65 % create files of each plot

66 % MATLAB fig file

67 saveas(gcf ,[ fullpath(’.\pics\figs’),’\spec’, num2str(ii)],’fig’);

68 % % pdf file for inclusion in thesis

69 % saveas(gcf ,[ fullpath (’./pics/pdfs ’),’/spec ’, num2str(ii)],’pdf ’);

70 % png file for quick viewing of all cases - this one has case label

71 % suplabel([’Case ’, num2str(ii)],’t’);

72 saveas(gcf ,[ fullpath(’./pics/pngs’),’/spec’, num2str(ii)],’png’);

73

74

75 end

76

77 fprintf(’spec’’ed!!!\r’)

78

79 end
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Appendix C. Inputs

Listing C.1: ../models/cases/sample.txt
1 % sample configuration file

2 % case = 730- this number is just a visual reference

3 % all comments must be behind %’s

4 % do not leave any blank rows

5 config: validation

6 busk

7 appendage

8 stiffness: 0

9 damping: 0

10 time: 10

11 whz: [[0;0] [4;12] [4;12]]

12 % or wrpm:

13 input: b(10:11 ,2:3) = 1e-3

14 wheels: 1 2 3

15 axes: 4 5

Listing C.2: ../models/cases/105.txt
1 config: validation

2 wheels: 1 2 3

3 axes: 1 2 4 5

4 time: 1

5 whz: 0

6 state: qbuilder (2 ,2:3) = 0.01

Listing C.3: ../models/cases/120.txt
1 config: validation

2 wheels: 2 3

3 axes: 4 10 5 11

4 time: 1

5 whz: 0

6 state: qbuilder (4 ,2:3) = 0.01*[1 -1]

7 state: qbuilder (11 ,2:3) = 0.4*[1 -1]

Listing C.4: ../models/cases/125.txt
1 config: validation

2 wheels: 2 3

3 axes: 4 10 5 11

4 busk

5 time: 1

6 whz: [[0;0] [10;10] -[10;10]]

7 state: qbuilder (4 ,2:3) = 0.01*[1 -1]

8 state: qbuilder (11 ,2:3) = 0.4*[1 -1]

Listing C.5: ../models/cases/126.txt
1 config: validation

2 wheels: 2 3

3 axes: 4 10 5 11

4 busk

5 time: 1

6 whz: [[0;0] -[10;10] [10;10]]

7 state: qbuilder (4 ,2:3) = 0.01*[1 -1]

8 state: qbuilder (11 ,2:3) = 0.4*[1 -1]

Listing C.6: ../models/cases/159.txt
1 config: validation
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2 wheels: 1 2 3

3 axes: 1 2 4 5

4 whz: 0

5 time: 0.25

6 input: b1(10,1) = 0.01

7 options: MaxStep =2e-4

Listing C.7: ../models/cases/700.txt
1 config: thesis

2 wheels: 1 2 3

3 axes: 4 5

4 whz: [[0;0] [0;0] [5;5]]

5 input: b(10:11 ,3) = 100

6 time: 0.5

7 options: MaxStep =2e-4

Listing C.8: ../models/cases/701.txt
1 config: thesis

2 wheels: 1 2 3

3 axes: 4 5

4 whz: [[0;0] [5;5] [0;0]]

5 input: b(10:11 ,2) = 100

6 time: 0.5

7 options: MaxStep =2e-4

Listing C.9: ../models/cases/730.txt
1 % case = 730

2 % looking for critical coning speed at f_con ~~ 6.8 Hz

3 % use the validation model

4 % use the support spring

5 % input.e = 1;

6 config: validation

7 busk

8 wheels: 1 2 3

9 axes: 4 5

10 time: 10

11 whz: [[0;0] [4;12] [4;12]]

12 input: b(10:11 ,2:3) = 1e-3

Listing C.10: ../models/cases/4001.txt
1 config: thesis

2 wheels: 1 2 3

3 axes: 4 5

4 wrpm: [[0;0] [20;20] [20;60]]*1000

5 time: 10

6 input: b(7:8 ,3) = 1

7 options: MaxStep =2e-4

Listing C.11: ../models/cases/4002.txt
1 config: thesis

2 wheels: 1 2 3

3 axes: 4 5

4 wrpm: [[0;0] [60;60] [20;60]]*1000

5 time: 10

6 input: b(7:8 ,3) = 1

7 options: MaxStep =2e-4
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Listing C.12: ../models/cases/4003.txt
1 config: thesis

2 wheels: 1 2 3

3 axes: 4 5

4 wrpm: [[0;0] [60;20] [20;60]]*1000

5 time: 10

6 input: b(7:8 ,3) = 1

7 options: MaxStep =2e-4

Listing C.13: ../models/cases/6012.txt
1 config: thesis

2 wheels: 1 2 3

3 busk

4 axes: 4 5

5 whz: [[0;0] 3000/9*[1;1] (3000/9+5)*[1;1]]

6 time: 1

7 input: b(10:11 ,2:3) = 1

8 options: MaxStep =2e-4

Listing C.14: ../models/cases/6013.txt
1 config: thesis

2 wheels: 1 2 3

3 axes: 4 5

4 busk

5 whz: [[0;0] 3000/9*[1;1] 0*[1;1]]

6 time: 1

7 input: b(10:11 ,2:3) = 1

8 options: MaxStep =2e-4

Listing C.15: ../models/cases/6017.txt
1 config: thesis

2 appendage

3 busk

4 wheels: 1 2 3 4

5 axes: 4 5

6 whz: [[0;0] 3000/9*[1;1] (3000/9+5)*[1;1]]

7 time: 1

8 input: b(10:11 ,2:3) = 1

9 options: MaxStep =2e-4

Listing C.16: ../models/cases/6018.txt
1 config: thesis

2 appendage

3 busk

4 wheels: 1 2 3 4

5 axes: 4 5

6 whz: [[0;0] 3000/9*[1;1] 400*[1;1]]

7 time: 1

8 input: b(10:11 ,2:3) = 1

9 options: MaxStep =2e-4
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This study uses a linear model of an Integrated Power and Attitude Control System (IPACS) to investigate the vibration interaction
between multiple flywheels. An easily extendable Matlab® script is created for the analysis of flywheel vibrations. This script is used
to build a vibration model consisting of two active magnetic bearing flywheels mounted on a support structure. The flywheels are
rotated at varying speeds, with an imbalance-induced centripetal force in one or both wheels causing vibrations in both wheels.
Flywheel and system responses are examined for low frequency vibrations which would cause undesirable excitation to a satellite
using IPACS, with a specific focus on the beat phenomenon and extra-synchronous vibration. Extra-synchronous resonant vibration
between multiple rotors is shown to exist in an ideal undamped configuration but even a very small realistic amount of damping is
enough to mitigate the effect enough that it is of less concern than individual rotor vibration inputs. Extra-synchronous resonant
vibration is thus shown to have a minimal effect on satellite IPACS operation.

flywheel, IPACS, gyroscope, satellite vibration
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